N 64-36427 NASA CR-102233

DYNAMIC STABILITY OF CYLINDRICAL PROPELLANT TANKS

by

Daniel D. Kana Wen-Hwa Chu

FINAL REPORT, PART II
Contract No. NAS8-21282
Control No. DCN 1-8-75-00009 (1F)

SwRI Project No. 02-2332

National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama

2 June 1969

SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 8500 Culebra Road San Antonio, Texas 78228

DYNAMIC STABILITY OF CYLINDRICAL PROPELLANT TANKS

by

Daniel D. Kana Wen-Hwa Chu

FINAL REPORT, PART II
Contract No. NAS8-21282
Control No. DCN 1-8-75-00009 (1F)

SwRI Project No. 02-2332

Prepared for

National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama

2 June 1969

Approved:

H. Norman Abramson, Director
Department of Mechanical Sciences

PREFACE

This report constitutes the second of two volumes which summarize the work accomplished under Contract NAS8-21282. It contains supporting experimental data, a theoretical analysis, and a listing of a digital computer program designed for predicting dynamic stability of propellant tanks under longitudinal excitation. The first part of the work, which deals with the dynamic state of the system prior to instability, is summarized in Final Report, Part I, entitled "Influence of a Rigid Top Mass on the Response of a Pressurized Cylinder Containing Liquid."

Both Part I and Part II of this Final Report are published on the same date. They present significant extensions and refinements of concepts originated under previous investigations conducted for NASA-MSFC.

Results of this preliminary work are summarized in "Dynamic Stability and Parametric Resonance in Cylindrical Propellant Tanks," by Daniel D. Kana, Wen-Hwa Chu, and Tom D. Dunham, Final Report, Contract No. NAS8-20329, SwRI Project No. 02-1876, January 17, 1968.

ABSTRACT

Dynamic instability and associated parametric resonance is a dominant form of response in a longitudinally excited cylindrical shell containing liquid. In order to assess the significance of such responses in a space vehicle propellant tank, the present paper is devoted to a theoretical and experimental study of their occurrence in a cylindrical shell system which includes the influences of axial preload, ullage pressure, partial liquid depth, and a finite top impedance. Donnell shell theory along with a modified Galerkin procedure is utilized to formulate equations which govern the stability of perturbations superimposed on an axisymmetric initial state of response. Stability boundaries are computed for a range of parameters affecting the region of principal parametric resonance and are compared with experimental results. It is found that liquid depth, top impedance, and ullage pressure have a strong influence on stability, while the effects of axial preload are relatively insignificant.

TABLE OF CONTENTS

	Page
NOMENCLATURE	$^{\circ}\mathbf{v}$
LIST OF ILLUSTRATIONS	vii
INTRODUCTION	1
DERIVATION OF STABILITY EQUATIONS	4
EVALUATION OF MATRIX ELEMENTS	11
Modal Functions Mass Coefficients Parametric Coefficients One-Term Approximation	11 12 13 17
THEORETICAL AND EXPERIMENTAL RESULTS	
ACKNOWLEDGMENTS	
REFERENCES	
DIGITAL COMPUTER PROGRAM	

NOMENCLATURE

a	radius of the shell
c ₀	speed of sound in the liquid
c's	E/ρ_s , speed of stress waves in the shell
E	modulus of elasticity
g	standard acceleration of gravity
Н	h/a, nondimensional liquid depth
$H_{\mathbf{S}}$	h _s /a, nondimensional thickness of shell
$\mathtt{I}_{\mathbf{z}}$	mass moment of inertia of top weight about z axis
l	length of the shell
m	one-half of the number of circumferential nodes; cos (m $ heta$)
$N_{xxd}^*, N_{\theta\theta d}^*$	dynamic part of initial-state stress resultants [nondimensionalized by $(1 - v^2)/Eh_s$]
$N_{xxs}^*, N_{\theta\theta s}^*, N_{x\theta s}^*$	static part of initial-state stress resultants [nondimensionalized by $(1 - v^2)/Eh_s$]
n	axial wave number; sin nπx/l
$P_{\mathbf{r}}$	nondimensional pressure loading on shell, P_r/E
P ₀ , p ₀	axial preload, ullage pressure
R, θ, Χ	cylindrical coordinates (space-fixed) nondimensionalized by radius a
U, V, W	shell displacements u, v, w, nondimensionalized by the radius a
$\mathbf{x_0}$	nondimensional amplitude of axial excitation ($X_0 = \hat{x}_0/a$)
z_0	top acceleration impedance (force/acceleration)
β	density parameter $\rho_{\ell} a/\rho_{s} h_{s}$

NOMENCLATURE (Cont'd)

ν	Poissons ratio
Φ	velocity potential, nondimensionalized by $\omega_0^2 a^2/\omega_{\mathbf{r}}$
₽ ℓ	mass density of liquid
ρ_s	mass density of the shell
au	nondimensional time, $\tau = \omega_r t$
ω_0^2	liquid parameter c_0^2/a^2
$\omega_{f r}$	response frequency
ω	excitation frequency
$\omega_{\mathbf{k}}$	natural frequency of m-k'th mode
Ω_{i}^{2}	designated frequency, nondimensionalized by a^2/c_s^2
$\tilde{\Omega}_{i}^{2}$	designated frequency, nondimensionalized by (1 - v^2) \times a^2/c_s^2
Ω_{i}^{2}	designated frequency, nondimensionalized by a^2/c_0^2
Superscripts	
(^)	the amplitude of ()
(·)	$(d/d\tau)$ (), $\tau = \omega t$
() ^p	related to initial state response

LIST OF ILLUSTRATIONS

Figure		Page
la	Mechanism of Dynamic Instability - Initial State m = 0	2
1ъ	Mechanism of Dynamic Instability - Perturbed State $m \ge 0$	3
2	Experimental Apparatus	19
3a	Influence of Liquid Depth on Stability, $h/\ell = 0$	21
3b	Influence of Liquid Depth on Stability, $h/\ell = 0.414$	22
3c	Influence of Liquid Depth on Stability, $h/\ell = 0.983$	23
4	Natural Frequencies of Partially Filled Tank	25
5	Influence of Axial Load on Stability	26
6	Influence of Ullage Pressure on Stability	28
7	Influence of Liquid Depth on Stability	29
8	Influence of Top Impedance on Stability	30

INTRODUCTION

Dynamic instability and parametric resonance are known to occur in many engineering systems. Numerous classic examples have been studied in detail by Bolotin¹. In more recent experimental investigations², it was found that this type of behavior is dominant amidst a complex variety of responses which can be observed in a longitudinally excited model vehicle propellant tank which is not sufficiently reinforced with stiffeners. A theoretical and further experimental investigation³ was conducted for a longitudinally excited, liquid-filled cylindrical shell. It was found that the system initially tends to respond in a state comprised of linear axisymmetric modes. However, the resulting membrane stresses form a parametric load with respect to nonaxisymmetric perturbations superimposed on the initial state. Thus, for wide ranges of the excitation parameters, instability and subsequent parametric resonance results, and linear vibration theory is no longer adequate to predict the response of either liquid pressure or wall motion.

In order to assess the significance of such instabilities in a propellant tank which forms a component in an overall space vehicle structure, the present paper is devoted to a study of their occurrence in a cylindrical shell system which includes the influences of axial preload, ullage pressure, partial liquid depth, and a finite top impedance. A diagram of the system is shown in Figure 1, which includes the appropriate parameters and boundary conditions for both the initial and perturbed states. The initial state represents linear forced axisymmetric motion, whose responses have already

Figure 1a. Mechanism Of Dynamic Instability –
Initial State
m = 0

Figure 1b. Mechanism Of Dynamic Instability Perturbed State
m ≥ 0

been determined, along with natural frequencies and modal functions for the system⁴. Stability of motion in the perturbed state is the subject of the present paper, although results from Reference 4 must be utilized in part of the analysis. Note that, theoretically, the perturbed state can be either axisymmetric (m = 0) or nonaxisymmetric (m > 0); however, for a single tank system, the nonaxisymmetric form of instability is dominant.

DERIVATION OF STABILITY EQUATIONS

The perturbed motion represented by Figure 1b will be analyzed by means of Sander's nonlinear shell equations 5, 6 which are based on Donnell approximations. These equations contain nonlinear terms resulting from the rotation of shell elements as well as nonlinear strain-displacement relations. We will follow the philosophy of Bolotin¹ and assume that retaining only nonlinear terms which result from rotations is sufficient to determine dynamic stability. Compressible flow theory is used for the liquid. The motion is expanded into a series of the natural mode eigenvectors which were obtained from the solution of the free vibration problem⁴. A modified Galerkin procedure is then utilized to reduce the system to a linear secondorder, time dependent set of coupled differential equations having periodic coefficients. The method is "modified" in the sense that the natural modal functions (finite series eigenvectors) are chosen as weighting functions, although they are not of closed form. An approximation of the perturbed motion will then be obtained by the use of only one eigenvector term of the series, so that the coupled set reduces to a single stability equation.

Thus, the governing shell equations are of the form

$$F_1 = L_{11}U + L_{12}V + L_{13}W - \tilde{\Omega}_r^2 \partial^2 U / \partial \tau^2 = 0$$
 (1a)

$$F_2 = L_{21}U + L_{22}V + L_{23}W - \tilde{\Omega}_r^2 \partial^2 V / \partial \tau^2 = 0$$
 (1b)

$$F_3 = L_{31}U + L_{32}V + L_{33}W - \tilde{\Omega}_r^2 \partial^2 W / \partial \tau^2 + \epsilon_d \tilde{L}_{33}W \cos \omega t$$

$$+\frac{(1-v^2)}{H_s}P_r = 0$$
 (1c)

where

$$L_{11} = \frac{\partial^{2}}{\partial X^{2}} + \frac{1 - \nu}{2} \frac{\partial^{2}}{\partial \theta^{2}}, \qquad L_{12} = \frac{1 + \nu}{2} \frac{\partial^{2}}{\partial X \partial \theta}$$

$$L_{13} = \nu \frac{\partial}{\partial X}, \qquad L_{21} = \frac{1 + \nu}{2} \frac{\partial^{2}}{\partial X \partial \theta}$$

$$L_{22} = \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1 - \nu}{2} \frac{\partial^{2}}{\partial X^{2}}, \qquad L_{23} = \frac{\partial}{\partial \theta}$$

$$L_{31} = -\nu \frac{\partial}{\partial X}, \qquad L_{32} = -\frac{\partial}{\partial \theta}$$

$$L_{33} = -\left[\frac{H_{s}^{2}}{12} \left(\frac{\partial^{4}}{\partial X^{4}} + 2 \frac{\partial^{4}}{\partial X^{2} \partial \theta^{2}} + \frac{\partial^{4}}{\partial \theta^{4}}\right) + 1\right] + \left[\frac{\partial}{\partial X} \left(N_{xxs}^{*} \frac{\partial}{\partial X}\right) + \frac{\partial}{\partial \theta} \left(N_{xxs}^{*} \frac{\partial}{\partial \theta}\right)\right]$$

$$L_{33} = \frac{\partial}{\partial X} \left(\hat{N}_{xxd}^{*} \frac{\partial}{\partial X}\right) + \frac{\partial}{\partial \theta} \left(\hat{N}_{\theta\theta d}^{*} \frac{\partial}{\partial \theta}\right) \qquad (2b)$$

 $\epsilon_{\mathbf{d}}$ = 0 for free vibration

 ϵ_d = 1 for forced vibration

Pressure loading on the shell is given by:

$$\frac{(1-\nu^2)}{H_s} P_r = -\tilde{\Omega}_0^2 \beta \frac{\partial \Phi}{\partial \tau} \text{ at } R = 1$$
 (3)

where the fluid velocity potential is governed by

$$\nabla^{*2}\Phi - \Omega_{r}^{2}\partial^{2}\Phi/\partial\tau^{2} = 0 \tag{4}$$

Boundary conditions on the fluid and shell are:

At
$$X = 0$$
,
 $U = 0$, $W = 0$, $V = 0$, $\partial^2 W/\partial X^2 = 0$
At $X = \ell/a$,
 $W = 0$, $V = 0$, $\partial^2 W/\partial X^2 = 0$

and

$$F_4 = \partial U/\partial X + Z^{**}\tilde{\Omega}_r^2 \partial^2 U/\partial \tau^2 = 0$$
 (5)

where

$$Z^{**} = \frac{Z_0(1 - v^2)}{2\pi\rho_s a^2 h_s}$$
 for $m = 0$

$$Z^{**} = \frac{(1 - v^2)I_z}{4\rho_s h_s a^5}$$
 for m = 1

$$Z^{**} = \infty$$
 for $m \ge 2$

Solutions of the shell motion having a given circumferential displacement distribution will be sought as expansions of the m, k-th natural modes

$$U(\theta, \tau, X) = \cos m\theta \sum_{k=1}^{K} a_k(\tau)U_{mk}(X) = \sum_{k=1}^{K} a_kU_{1k}$$
 (6a)

$$V(\theta, \tau, X) = \sin m\theta \sum_{k=1}^{K} a_k(\tau) V_{mk}(X) = \sum_{k=1}^{K} a_k U_{2k}$$
 (6b)

$$W(\theta, \tau, X) = \cos m\theta \sum_{k=1}^{K} a_k(\tau) W_{mk}(X) = \sum_{k=1}^{K} a_k U_{3k}$$
 (6c)

where for convenience we have defined a general shell displacement vector

$$\vec{\mathbf{U}} = \vec{\mathbf{U}}(\mathbf{U}, \mathbf{V}, \mathbf{W}) = \vec{\mathbf{U}}(\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3)$$

which is a function of both space and time and is associated with the fluid velocity potential Φ and upper shell displacement U_{ℓ} .

The potential Φ satisfies Equation (4) which forms a constraint on the shell system. In order to interpret the fluid pressure loading as an apparent mass which is valid at the response frequency ω_r , we express the potential for forced motion as

$$\Phi(\theta, \tau, \omega_{\mathbf{r}}, R, X) = \cos m\theta \sum_{k=1}^{K} \dot{a}_{k}(\tau) \Phi_{mk}(\omega_{\mathbf{r}}, R, X)$$
 (7)

Note that $\Phi_{mk}(\omega_r, R, X)$ is the component of Φ associated with a shell displacement component W_{mk} , and both liquid and shell motion is anticipated to be nearly periodic with responses at frequency ω_r . At the shell wall, we use the notation

$$\Phi_{mk}(\omega_{\mathbf{r}},1,X) = \Phi_{mk}(\omega_{\mathbf{r}},X)$$

For the special case of $\omega_{\mathbf{r}} = \omega_{\mathbf{k}}$, the system responds in the m,k-th natural mode, and the shell displacement modal functions form the vector

$$\vec{\mathbf{U}}_{\mathbf{k}} = \vec{\mathbf{U}}_{\mathbf{k}}(\mathbf{U}_{1\mathbf{k}}, \mathbf{U}_{2\mathbf{k}}, \mathbf{U}_{3\mathbf{k}})$$

This vector is a function of space only and is associated with the fluid velocity potential $\Phi_{mk}(\omega_k, X)$ and the top displacement $U_{\ell k}$. From the definition of natural frequencies, these modal functions satisfy

$$\sum_{j=1}^{3} L_{ij}U_{jk} + \delta_{i3}\tilde{\Omega}_{0}^{2}\beta \Phi_{mk}(\omega_{k}, X) + \tilde{\Omega}_{k}^{2}U_{ik} = 0$$
(8a)

$$i = 1, 2, 3$$

$$\partial U_{1k}/\partial X = Z^{**}\tilde{\Omega}_k^2 U_{\ell k} \text{ at } X = \ell/a$$
 (8b)

We now consider the forced motion. By means of a Galerkin procedure⁷, we form an expression for virtual work in the system

$$\sum_{i=1}^{3} \int_{S} F_{i}(\vec{U}) \cdot U_{ik'} dS + \epsilon_{m} \int_{C} F_{4}(U_{\ell k}) \cdot U_{\ell k'} d\theta = 0$$
 (9)

where

$$\epsilon_{\rm m}$$
 = 1 for m = 0, 1

$$\epsilon_{\mathbf{m}} = 0 \text{ for } \mathbf{m} \ge 2$$

More specifically, we substitute Equations (3), (6) and (7) into Equations (1) and (5) and then by means of Equation (9) form an expression for virtual work between forces (expressed in terms of displacements) associated with the general forced motion and displacements associated with the m, k'-th natural mode. There results:

$$\sum_{k=1}^{K} \left[a_{k} \int_{S}^{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ik'}(L_{ij}U_{jk}) dS \right]$$

$$- \ddot{a}_{k} \int_{S}^{3} \widetilde{\Omega}_{0}^{2} \beta \Phi_{mk}(\omega_{r}, X) U_{3k'} \cos m\theta dS - \widetilde{\Omega}_{r}^{2} \ddot{a}_{k} \int_{S}^{3} \sum_{i=1}^{3} U_{ik'}U_{ik} dS$$

$$+ \epsilon_{d} a_{k} \cos \omega t \int_{S}^{2} U_{3k'}(\tilde{L}_{33}U_{3k}) dS + \epsilon_{m} \int_{C}^{2} \left(a_{k} \frac{\partial U_{1k}}{\partial X} U_{\ell k'} + Z^{**} \widetilde{\Omega}_{r}^{2} \ddot{a}_{k} U_{\ell k} U_{\ell k'} \right) d\theta = 0$$

$$+ Z^{**} \widetilde{\Omega}_{r}^{2} \ddot{a}_{k} U_{\ell k} U_{\ell k'} d\theta = 0$$

$$= 0$$

$$= 0$$

Upon use of Equations (8), reverting back to the more conventional displacement symbols in Equations (6) and carrying out the spatial integration, this can be written as

$$\begin{split} \sum_{k=1}^{K} \left[(K_{2k'k} - \epsilon_{m} K_{4k'k}) (\tilde{\Omega}_{\mathbf{r}}^{2} \ddot{\mathbf{a}}_{k} + \tilde{\Omega}_{k}^{2} \mathbf{a}_{k}) + K_{3k'k} (\tilde{\Omega}_{\mathbf{r}}^{2} \ddot{\mathbf{a}}_{k} + \tilde{\Omega}_{k}^{2} \mathbf{a}_{k}) \right] \\ + \sum_{k=1}^{K} \left\{ a_{k} \tilde{\Omega}_{k}^{2} [M_{k'k} (\omega_{k}) + I_{k'k}] + \ddot{a}_{k} \tilde{\Omega}_{\mathbf{r}}^{2} [M_{k'k} (\omega_{\mathbf{r}}) + I_{k'k}] \right. \\ \left. + a_{k} N_{k'k} \cos \omega t \right\} = 0 \end{split}$$
 (11)

where k' = 1, 2, 3, ..., K, and

$$K_{2k'k} = \int_{0}^{\ell/a} U_{mk'} U_{mk} dX$$
 (12a)

$$K_{3k'k} = \int_{0}^{\ell/a} V_{mk'} V_{mk} dX$$
 (12b)

$$K_{4k'k} = Z^{**} \int_{0}^{2\pi} U_{\ell k'} U_{\ell k} d\theta$$
 (12c)

$$M_{k'k}(\omega_r) = \beta \frac{\omega_0^2}{\omega_r^2} \int_0^{\ell/a} W_{mk'} \Phi_{mk}(\omega_r, X) dX$$
 (12d)

$$M_{k'k}(\omega_k) = \beta \frac{\omega_0^2}{\omega_k^2} \int_0^{\ell/a} W_{mk'} \Phi_{mk}(\omega_k, X) dX$$
 (12e)

$$I_{k'k} = \int_{0}^{\ell/a} W_{mk'} W_{mk} dX$$
 (12f)

$$N_{k'k} = -\int_{0}^{\ell/a} W_{mk'} \left(\hat{N}_{xxd}^{*} \frac{\partial^{2} W_{mk}}{\partial X^{2}} + \frac{\partial \hat{N}_{xxd}^{*}}{\partial X} \frac{\partial W_{mk}}{\partial X} - m^{2} \hat{N}_{\theta\theta d}^{*} W_{mk} \right) dX$$
(12g)

The coupled set of K equations (11) govern the perturbed motion, described in Figure 1b, for a given value of m. We will limit further discussion to the case of modes having $m \ge 2$. For these modes, the dominant motion is radial for the set of natural modes at lower frequencies. Thus, the terms under the first summation can be neglected, and, in matrix notation, Equations (11) become

$$\tilde{\Omega}_{\mathbf{r}}^{2}[M] \left\{ \ddot{\mathbf{a}} \right\} + \tilde{\Omega}_{\mathbf{k}}^{2}[K] \left\{ \mathbf{a} \right\} + [T] \left\{ \mathbf{a} \right\} \cos \omega t = 0$$
(13a)

where the elements of the k-th row and k-th column of the corresponding matrices are

$$\mathfrak{M}_{k'k} = M_{k'k}(\omega_r) + I_{k'k}, \qquad \mathfrak{K}_{k'k} = M_{k'k}(\omega_k) + I_{k'k}$$

$$T_{k'k} = N_{k'k};$$
 and $\{a\} = \begin{cases} a_1 \\ a_2 \\ \vdots \\ a_K \end{cases}$

Equation (13a) can further be written as

$$\left\{\ddot{\mathbf{a}}\right\} + \frac{\tilde{\Omega}_{\mathbf{k}}^{2}}{\tilde{\Omega}_{\mathbf{r}}^{2}} \left[\mathbf{M}\right]^{-1} \left[\mathbf{K}\right] \left\{\mathbf{a}\right\} + \left[\mathbf{M}\right]^{-1} \left[\mathbf{T}\right] \left\{\mathbf{a}\right\} \cos \omega t = 0$$
 (13b)

When the flow is incompressible, $M_{k^{\prime}k}$ is independent of ω and we have

$$[M]^{-1}[K] = [I]$$

where [I] is the identity matrix. It must be emphasized that Equations (13) are not general differential equations in time but include the restriction of nearly periodic motion in the generalized apparent mass given by Equation (7).

EVALUATION OF MATRIX ELEMENTS

Modal Functions

Elements of the matrices in Equations (13) will now be evaluated from Equations (12d-g) in terms of the X-dependent natural modal functions (eigenvectors) of the system. These functions, which are not of closed form, have previously been determined from an eigenvalue problem⁴ in terms of the following series forms for the shell displacements:

$$U_{mk}(X) = \frac{1}{2} B_{2k} X^2 + B_{1k}(X - \ell/a) + B_{m0k}$$

$$+ \sum_{n=1}^{N} B_{mnk} \cos \lambda_n X \qquad (14a)$$

$$V_{mk}(X) = \sum_{n=1}^{N} C_{mnk} \sin \lambda_n X$$
 (14b)

$$W_{mk}(X) = \sum_{n=1}^{N} A_{mnk} \sin \lambda_n X$$
 (14c)

and, for the velocity potential,

$$\Phi_{mk}(\omega_r, X) = \sum_{n=1}^{N} A_{mnk} \Psi_{mn}(\omega_r, X)$$
 (15)

where $\Psi_{mn}(\omega_r, X)$ is a component function which satisfies Equation (4) for vibration at frequency ω_r , and corresponds to the $\sin \lambda_n X$ component function in W_{mk} through the boundary condition which must be satisfied at the tank wall⁴.

Mass Coefficients

The mass coefficient $I_{k'k}$ will now be developed from Equation (12f). By means of Equation (14c), there results

$$I_{k'k} = \int_{0}^{\ell/a} \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k'} \sin \lambda_{n'} X \sin \lambda_{n} X dX$$

$$= \frac{\ell}{2a} \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k'} \delta_{n'n} = \frac{\ell}{2a} \sum_{n=1}^{N} A_{mnk} A_{mnk'}$$
(16)

By substituting Equations (14c) and (15) into (12d), the liquid apparent mass coefficient corresponding to the response frequency $\omega_{\mathbf{r}}$ becomes

$$M_{k'k}(\omega_r) = \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k} \mathcal{M}_{n'n}(\omega_r)$$
(17)

where

$$\mathcal{M}_{\mathbf{n'n}}(\omega_{\mathbf{r}}) = \beta \frac{\omega_0^2}{\omega_{\mathbf{r}}^2} \int_0^{\ell/a} \Psi_{\mathbf{mn}}(\omega_{\mathbf{r}}, X) \sin \lambda_{\mathbf{n'}} X dX$$

Except for a normalizing constant, the latter expression has also been evaluated in previous work. That is,

$$\mathcal{M}_{n'n}(\omega_r) = \alpha_{n'}^2 M_{mn'n} \tag{18}$$

where

$$\alpha_{n'}^2 = \int_0^{\ell/a} \sin^2 \lambda_{n'} X dX = \frac{\ell}{2a}$$

and M_{mn} 'n is given by Equation (18a) in Reference 4. Note, however, that the free index k used in the referenced expression is not the same k which is used to designate the natural mode herein, and we must also use $\omega_r = \omega$.

Finally, the apparent mass coefficient $M_{k'k}(\omega_k)$ given by Equation (12e) is obtained simply by substituting $\omega_{\mathbf{r}} = \omega_k$ in Equations (17) and (18).

Parametric Coefficients

Upon substitution of Equation (14c) into (12g), we obtain:

$$N_{k'k} = \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k'} J_{n'n}$$
 (19a)

where

$$J_{n'n} = \int_{0}^{\ell/a} \left(\lambda_{n}^{2} \hat{N}_{xxd}^{*} \sin \lambda_{n} X - \lambda_{n} \frac{\partial \hat{N}_{xxd}^{*}}{\partial X} \cos \lambda_{n} X + m^{2} \hat{N}_{\theta\theta d}^{*} \sin \lambda_{n} X \right) \sin \lambda_{n'} X dX$$
(19b)

The dynamic stress resultant amplitudes \hat{N}_{xxd}^* and $\hat{N}_{\theta\theta d}^*$ are produced by forced excitation in the axisymmetric initial state described in Figure 1a. These stress amplitudes can be expressed in terms of the amplitudes of the initial-state displacements by means of the usual stress-displacement equations

$$\hat{N}_{xxd}^* = \frac{\partial \hat{U}^P}{\partial X} + \nu \hat{W}^P$$
 (20a)

$$\hat{N}_{\theta\theta d}^* = \hat{W}^P + \nu \frac{\partial \hat{U}^P}{\partial X}$$
 (20b)

Thus, the parametric coefficients are partly determined by the initial state displacement amplitudes $\hat{\mathbb{U}}^p$ and $\hat{\mathbb{W}}^p$.

The solution to the linear forced axisymmetric response of the initial state, in terms of displacements, has previously been given by Equation (25) in Reference 4. However, in the direct use of this equation, the appropriate elements of its matrices must include the substitution

$$M^{**} = Z^{**}$$
 for $m = 0, 1$ (21)

since an arbitrary acceleration impedance is allowed in the present problem, rather than only a rigid mass. Further, to allow for comparison of numerical and experimental data, it is convenient to express the initial-state displacements as ratios of the excitation amplitude X_0 . Therefore, the dynamic displacement amplitudes are of the form

$$\hat{\mathbf{U}}^{p} = \mathbf{X}_{0} \left[\frac{1}{2} \ \mathbf{B}_{2}^{p} \mathbf{X}^{2} + \mathbf{B}_{1}^{p} \left(\mathbf{X} - \frac{\ell}{\mathbf{a}} \right) + \mathbf{B}_{\mathbf{m}0}^{p} \right]$$

$$+ \sum_{\mathbf{n}''=1}^{N} \mathbf{B}_{\mathbf{m}\mathbf{n}''}^{p} \cos \lambda_{\mathbf{n}''} \mathbf{X}$$
(22a)

$$\hat{\mathbf{w}}^{p} = \mathbf{X}_{0} \sum_{\mathbf{n}'' = 1}^{N} \mathbf{A}_{\mathbf{m}\mathbf{n}''}^{p} \sin \lambda_{\mathbf{n}''} \mathbf{X}$$
 (22b)

whose coefficients are completely determined by solving for the case of $X_0 = 1$.

The initial-state stresses can now be determined. Upon substituting Equations (22) into (20a), there results

$$\hat{N}_{xxd}^{*} = X_{0} \left[B_{1}^{p} + B_{2}^{p} X - \sum_{n''=1}^{N} (\lambda_{n''} B_{mn''}^{p} - \nu A_{mn''}^{p}) \sin \lambda_{n''} X \right]$$
 (23a)

and the derivative is

$$\frac{\partial \hat{N}_{xxd}^*}{\partial X} = X_0 \left[B_2^p - \lambda_{n''} \sum_{n''=1}^{N} \left(\lambda_{n''} B_{mn''}^p - \nu A_{mn''}^p \right) \cos \lambda_{n''} X \right]$$
 (23b)

Upon substituting Equations (22) into (20b), there results:

$$\hat{N}_{\theta\theta d}^{*} = X_{0} \left[\nu (B_{1}^{p} + B_{2}^{p}X) + \sum_{n''=1}^{N} (A_{mn''}^{p} - \nu \lambda_{n''} B_{mn''}^{p}) \sin \lambda_{n''} X \right]$$
 (23c)

For convenience of computation, these stress resultants and derivatives are expanded into complete Fourier series as follows:

$$\hat{N}_{xxd}^{*} = X_{0} \sum_{n''=1}^{N} N_{1n''} \sin \lambda_{n''} X$$
 (24a)

$$\widehat{N}_{\theta\theta d}^{*} = X_{0} \sum_{n''=1}^{N} N_{2n''} \sin \lambda_{n''} X$$
 (24b)

$$\frac{\partial \hat{N}_{xxd}^*}{\partial X} = X_0 \left(B_2^p + \sum_{n''=1}^N N_{3n''} \cos \lambda_{n''} X \right)$$
 (24c)

where

$$N_{1n''} = B_2^p \tilde{X}_{1n''} + B_1^p \tilde{X}_{0n''} - \lambda_{n''} B_{mn''}^p + \nu A_{mn''}^p$$

$$N_{2n''} = A_{mn''}^p + \nu (B_2^p \tilde{\chi}_{1n''} + B_1^p \tilde{\chi}_{0n''} - \lambda_{n''} B_{mn''}^p)$$

$$N_{3n''} = -\lambda_{n''}^2 B_{mn''}^p + \nu \lambda_{n''} A_{mn''}^p$$

and

$$\tilde{\chi}_{0n''} = \frac{2a}{\ell} \int_{0}^{\ell/a} \sin \lambda_{n''} X dX$$

$$\tilde{\chi}_{ln''} = \frac{2a}{\ell} \int_{0}^{\ell/a} X \sin \chi_{n''} X dX$$

The parametric coefficients can now be completely evaluated.

Upon substitution of Equations (24) into Equations (19), there results

$$N_{k'k} = X_0 \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k'} \left[\sum_{n''=1}^{N} (\lambda_n^2 N_{1n''} d_{n''n'n} + m^2 N_{2n''} d_{n''n'n} - \lambda_n N_{3n''} e_{n''n'n}) - \lambda_n B_2^p e_{0n'n} \right]$$
(25)

where

$$e_{0n'n} = \int_{0}^{\ell/a} \cos \lambda_{n} X \sin \lambda_{n'} X dX$$

$$e_{n''n'n} = \int_{0}^{\ell/a} \cos \lambda_{n''} X \cos \lambda_{n} X \sin \lambda_{n'} X dX$$

$$d_{n''n'n} = \int_{0}^{\ell/a} \sin \lambda_{n''} X \sin \lambda_{n'} X \sin \lambda_{n} X dX$$

One-Term Approximation

For the m-k'th natural mode in Equation (13a), set k' = k to obtain

$$\tilde{\Omega}_{\mathbf{r}}^{2}\overline{\mathbf{M}}\ddot{\mathbf{a}}_{k} + \tilde{\Omega}_{k}^{2}\overline{\mathbf{K}}\mathbf{a}_{k} + \mathbf{X}_{0}\overline{\mathbf{T}}\mathbf{a}_{k}\cos\omega t = 0$$
 (26)

where from Equations (16-19)

$$\overline{M} = \frac{\ell}{2a} \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k} M_{mn'n} (\omega_r) + \frac{\ell}{2a} \sum_{n=1}^{N} A_{mnk}^2$$

$$\overline{K} = \frac{\ell}{2a} \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k} M_{mn'n} (\omega_k) + \frac{\ell}{2a} \sum_{n=1}^{N} A_{mnk}^2$$

$$\overline{T} = \sum_{n=1}^{N} \sum_{n'=1}^{N} A_{mnk} A_{mn'k} \left[\sum_{n''=1}^{N} (\lambda_n^2 N_{1n''} d_{n''n'n}) \right]$$

+
$$m^2 N_{2n''} d_{n''n'n} - \lambda_n N_{3n''} e_{n''n'n} - \lambda_n B_2^p e_{0n'n}$$

Equation (26) is a Mathieu equation whose stability properties are well known. To put it in a standard form⁸ for determining the stability boundaries for principal parametric (1/2-subharmonic) resonance, we set $\omega = 2\omega_{\mathbf{r}}$ and obtain

$$\ddot{a}_k + (\overline{a} + 2\overline{q}X_0 \cos 2\tau)a_k = 0 \tag{27}$$

where

$$\overline{a} = \frac{\widetilde{\Omega}_k^2 \overline{K}}{\widetilde{\Omega}_r^2 \overline{M}} , \qquad \overline{q} = \frac{\overline{T}}{2\widetilde{\Omega}_r^2 \overline{M}}$$

The stability boundaries can then be approximated by

$$\overline{q}X_0 = \overline{a} - 1 \text{ for } \overline{a} > 1$$

$$\overline{q}X_0 = 1 - \overline{a} \text{ for } \overline{a} < 1$$
(28)

In terms of input acceleration, which is convenient for experimental measurement, these become

$$g_{x} = X_{0} \frac{\omega^{2} a}{g} = \frac{\omega^{2} a}{g} \left(\frac{\left| \overline{a} - 1 \right|}{\overline{q}} \right)$$
 (29)

THEORETICAL AND EXPERIMENTAL RESULTS

Experimental data for stability boundaries are obtained from the apparatus shown in Figure 2. All pertinent parameters, including the input

Figure 2. Experimental Apparatus

impedance Z₀ of the boundary condition at the tank top, could be measured. The use of acceleration impedance (force/acceleration) proved to be most convenient in this application. Variation of the impedance was achieved by using different rigid masses as well as the loading frame. The cylinder is made of 0.005-in. stainless steel, has a diameter of 10 in., and is 14.5 in. long (the same cylinder as that used in Reference 4).

Theoretical and experimental stability boundaries are compared in Figure 3 for the k = 1, m = 10 mode. Theoretical results are obtained from Equation (29) with N = 5 terms. Excitation conditions at or above the boundaries result in a principal parametric resonance whose mode shape is dominantly the k = 1, m = 10 natural mode, and whose frequency of motion is 1/2-subharmonic to the excitation. Experimental points were determined as the points of least acceleration where the parametric response would occur. It is apparent that significant deviation exists between theoretical and experimental results for the empty tank, and better agreement is achieved for greater liquid depths. After careful scrutiny, it was ascertained that the wider experimental stability boundaries are principally caused by imperfections in the cylinder. That is, split natural modes 9 and spatially shifting modal patterns occurred so that one exact natural frequency did not exist. As a result, the experimental system shows a tendency to be more unstable than predicted by theory. This trend is apparent in all the data. It is possible that somewhat better agreement could be achieved by the use of some form of imperfection theory in the analysis. This possibility remains to be investigated.

Figure 3. Influence Of Liquid Depth On Stability

Figure 3. Influence Of Liquid Depth On Stability

Figure 3. Influence Of Liquid Depth On Stability

It was desirable to determine the influence of the various system parameters on the stability boundaries for a given mode. This was done in terms of dimensional variables, in order to emphasize the complexity of this influence. For this purpose, it is necessary to understand the effects of the same parameters on the natural frequencies of the system. For convenience, some natural frequencies which were determined in the earlier work⁴ for several symmetric and one nonsymmetric mode are given as functions of liquid depth in Figure 4.

It is recognized that, in general, a more unstable system will possess a stability boundary whose acceleration ordinate is at a lower value for a given value of the frequency parameter $2\omega_{1-10}$. Therefore, in order to assess the effects of axial load, ullage pressure, liquid depth, and top impedance, a stability boundary acceleration g_{x1} was determined at an excitation frequency value of $\omega_{x1} = 0.996$ ($2\omega_{1-10}$) for a range of each of these parameters. Theoretical and experimental results are compared in Figures 5 through 8. These results must be compared with those in Figure 4 for proper interpretation. At a given liquid depth, increasing axial tension has only a small effect on natural frequencies and, likewise, only an insignificant effect on stability as shown in Figure 5. On the other hand, increasing ullage pressure significantly raises the natural frequencies of the nonsymmetric modes but leaves those of the lower symmetric modes essentially unchanged. Thus, as ω_{v1} approaches a natural frequency for a symmetric mode, the parametric excitation of the initial state is amplified, and the system becomes more unstable. This is reflected by the dips in the curves in

Figure 4. Natural Frequencies Of Partially Filled Tank

Figure 5. Influence Of Axial Load On Stability

Figure 6. It is also interesting to note that, at certain frequencies, the system becomes completely stable where the parametric coefficient in Equation (27) becomes zero.

Increasing liquid depth changes all natural frequencies, as shown in Figure 4, and has a profound influence on stability throughout the depth range, as shown in Figure 7. This results from the coincidence of $\omega_{\rm xl}$ with natural frequencies of symmetric modes at certain points, as well as the provision of an increased distributed parametric loading on the tank wall.

The influence of top impedance on stability is shown in Figure 8. Increasing this impedance lowers the frequencies of symmetric modes while leaving the nonsymmetric mode frequencies unaltered. Thus, strong interaction can again be seen to occur. The dip in the curve occurs at an impedance such that $\omega_{\rm xl}$ coincides with the natural frequency of the first symmetric mode.

It is obvious that variation of the above parameters can cause either an increase or decrease of stability, depending on the range of analysis.

Further, it must be recognized that many nonsymmetric modes are present in the frequency range indicated in Figure 4, and each mode can become unstable as the one which was studied. Therefore, a complex pattern of instability and parametric resonance occurs with many overlapping regions of instability. The overall trend of the data shows good qualitative agreement between theory and experiment, although significant quantitative discrepancies exist because of the reasons previously discussed.

Figure 6. Influence Of Ullage Pressure On Stability

Figure 7. Influence Of Liquid Depth On Stability

Figure 8. Influence Of Top Impedance On Stability

ACKNOWLEDGMENTS

The authors wish to express their sincere appreciation to several colleagues for assistance during the conduct of this research program.

Particular mention should be given to Dr. H. Norman Abramson for his counsel, to Mr. Dennis Scheidt for performing most of the experiments, to Mr. Robert Gonzales for digital computer programming, and to Mr. Victoriano Hernandez for preparing the figures in this report.

REFERENCES

- 1. Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day, Inc., San Francisco, California (1964).
- Kana, D. D. and Gormley, J. F., "Longitudinal Vibration of a Model Space Vehicle Propellant Tank," <u>AIAA Journal of Spacecraft</u> and Rockets, Vol. 4, No. 12, December 1967, pp. 1585-1591.
- 3. Kana, D. D. and Craig, R. R., Jr., "Parametric Oscillations of a Longitudinally Excited Cylindrical Shell Containing Liquid," AIAA Journal of Spacecraft and Rockets, Vol. 5, No. 1, January 1968, pp. 13-21.
- 4. Kana, D. D. and Chu, W. H., "Influence of a Rigid Top Mass on the Response of a Pressurized Cylinder Containing Liquid," Final Report Part I, Contract No. NASS-21282, SwRI Project No. 02-2332, June 2, 1969, also AIAA Jour. Spacecraft and Rockets, 6, 2, February 1969, pp. 103-110.
- 5. Sanders, J. L., Jr., "Nonlinear Theories for Thin Shells," Q. Appl. Math., Vol. XXI, No. 1 (1963), pp. 21-36.
- 6. Sanders, J. L., Jr., "An Improved First Approximation Theory for Thin Shells," NASA Rept. 24, June 1959.
- 7. Duncan, W. J., "Galerkin's Method in Mechanics and Differential Equations," Aeronautical Research Committee Reports and Memoranda No. 1798, London (1937).
- 8. Cunningham, W. J., Introduction to Nonlinear Analysis, McGraw-Hill Book Co., Inc., New York, N. Y. (1958).
- 9. Tobias, S. A., "A Theory of Imperfection for the Vibration of Elastic Bodies of Revolution," Engineering, 172, pp. 409-411 (1951).

DIGITAL COMPUTER PROGRAM

INPUT DATA DESCRIPTION

Card No.	Fortran Symbol	Variable† Name	Units	Definition
1	RHO	386ρ	1b/in. ³	weight density of liquid
	RHOS	386ρ _s	1b/in. ³	weight density of the shell
	A0	a ₀	in.	inner radius of the tank
	SH	$\mathbf{h}_{\!$	in.	depth of liquid
	SHS	h _s	in.	thickness of shell
	SL	L	in.	length of the shell
2	P0	$\mathbf{p_0}$	1b/in. ²	ullage pressure
	ENU	ν		Poissons ratio
	\mathbf{E}_{i}	E	lb/in. ²	modulus of elasticity
	BMSTR	Z^{**}		nondimensional top impedance
	C0	c ₀	in./sec ²	speed of sound in the liquid
3	NJ			no. of roots µmj
	N	N		no. terms in series expressions
4	w	ω/2π	cps	excitation frequency
	BM	z_0	lb sec ² /in.	top impedance
	CP0	P_0	1b	applied force
	NOPT			print option
	M	m		circumferential wave number
5	UMJ(I)	$^{\mu}$ mj		roots of $J_m'(\mu_{mj}) = 0$, $m \neq 0$
6	W	$\omega/2\pi$	cps	excitation frequency
	BM	z_0	$1b \sec^2/in.$	top impedance

[†]Note that some variables in computer program are slightly different from those as defined in NOMENCLATURE on pp. v to vi of text portion of this report.

Card No.	Fortran Symbol	Variable Name	Units	Definition
	CP0	\mathbf{P}_{0}	lb	applied force
	NOPT			print option
	M	m		circumferential wavenumber
7	UMJ(I)	$\mu_{\mathbf{m}\mathbf{j}_0}$	m = 0	roots of $J_m'(\mu_{mj}) = 0$, $m = 0$

PROGRAM OUTPUT

Printed Output

- 1. Input data h, h_s, ℓ , a₀, a, p₀, Z^{**} , 386 ρ , 386 ρ _s, E, c₀, ν
- 2. In subroutine MITERS the mode no., eigenvalue, no. of iterations, no. of times Aitken's delta process is used, the eigenvector, and check eigenvalue and eigenvector
- 3. Mode no., $\tilde{\Omega}_k$, ω_k in rad/sec, and ω_k in cps
- 4. ω in cps, ω_k in cps, \overline{K} , \overline{T} , \overline{M} , \overline{a} , \overline{q} , X_0 , g_x , and $\omega/2\omega_k$

PROGRAM NOTES

Subprograms Used

In addition to the main program the following subroutines are used:

- 1. BES, computes the Bessel functions J_n or I_n .
- 2. MATINV, computes the inverse of a real matrix.
- 3. MPRINT, prints matrix in matrix format.
- 4. MITERS, computes the eigenvalues and eigenvectors of a real or complex matrix by the power method.
- 5. NOPT is a print option that allows printing of intermediate results.

The following subroutines are included as a part of subprogram MITERS:

SWEEPX

NPNRMX

DPMLTX

SYMBOLIC LISTING

Some of the program FORTRAN symbols which were not defined in the Input Data Description are:

Fortran Symbol	Variable† Name	
A	a	
BMS	$M_s = 2\pi\rho_s a$	h _S l
HS	$H_{\mathbf{S}}$	
CS	cs	
Н	Н	
SLSTR	l/a	
AONSQ	$a_{n'}^2$	
X10	x ₁₀	
X20	x ₂₀	
ALN(I)	$\lambda_{\mathbf{n}}$	n = 1, N
ALNP(I)	$\lambda_{\mathbf{n}^{\dagger}}$	$n^t = 1, N$
X1(I)	X _{ln} ,	$n^t = 1, N$
X2(I)	x _{2n'}	n! = 1, N
X0B(I)	$\tilde{\chi}_{0n'}$	n' = 1, N
X1B(I)	$\tilde{x}_{1n'}$	n' = 1, N
ENB(I)	$\mathbf{\tilde{E}_{n}}$	n' = 1, N

[†]Corresponding to Final Report Part I.

Fortran Symbol	Variable Name	
ETA(J)	$\eta_{\mathbf{m}\mathbf{j}}$	j = 1, NJ
CJH(I)	c_{jH}	j = 1, NJ
CNJ(I, J)	$\mathbf{\tilde{c}_{n'j}}$	n' = 1,N; j = 1,NJ
BMJN(I,J)	$ ilde{\mathtt{B}}_{ extbf{mjn}}$	j = 1, NJ; n = 1, N
BN1(I)	N_{lmn}	n = 1, N
BN2(I)	N_{2mn}	n = 1, N
BNO(I)	N_{0mn}	n = 1, N
BOON(I)	${ m \tilde{B}_{0.0n}}$	n = 1, N
BMMNN(I, J)	M _{mn'n}	n' = 1, N; n = 1, N
R1M(I,J)	R _{lmn'n}	
S2M(I, J)	$s_{2mn'n}$	
U1M(I, J)	U _{lmn'n}	
U2 M(I, J)	$u_{2mn'n}$	
T3M(I, J)	T _{3mn'n}	
U3 M(I, J)	U _{3mn'n}	
V2M(I, J)	$v_{2mn'n}$	
W1M(I, J)	$w_{lmn'n}$	
W2M(I, J)	W _{2mn'n}	
W3M(I, J)	$w_{3mn!n}$	
R2M(I, J)	$R_{2mn'n}$	
R3M(I, J)	R _{3mn'n}	

S_{lmn'n}

S1M(I, J)

Fortran Symbol	Variable Name
S3M(I, J)	S _{3mn'n}
T1M(I, J)	$T_{lmn!n}$
T2M(I, J)	$T_{2mn'n}$
V1M(I, J)	$v_{lmn'n}$
X1M(I, 1)	$x_{ln'}$
U4M(1,I)	U_{4n}
V5M(1,I)	v_{5n}
R4M(1,I)	R_{4n}
R5M(1,I)	R_{5n}
R6M(1, I)	R_{6n}
O1M(I, 1)	$o_{ln'}$
P1M(I,1)	P _{ln'}
Y1M(I, 1)	Y _{ln'}
Z1M(I, 1)	$z_{ln'}$
Y2M(I, 1)	Y _{2n} '
Z2M(I, 1)	$z_{2n'}$
Y3M(I, 1)	Y _{3n} '
Z3M(I, 1)	$z_{3n'}$
P2M(I, 1)	P _{2n'}
Q2M(I, 1)	$Q_{2n'}$
V4M(1,I)	v_{4n}
S5M(1,I)	s_{5n}

Fortran Symbol	Variable Name
V3M(I, J)	V _{3mn'n}
V5M(1,1)	V_{5n}
S5M(1,I)	S _{5n}
UVW(I,J)	[U]
RST(I, J)	[R]
UTR(I, J)	[U] ⁻¹ [R]
UWR(I, J)	$\left[\left[\mathbf{U} \right] - \widetilde{\Omega}^{2} \left[\mathbf{R} \right] \right]^{-1}$
AI(I)	I _{On'}
QBH(I)	$\hat{Q}_{\mathbf{0n'}}^{B}$
FH(I)	$\mathbf{F_{rn'}}$
APH(I)	$[\{A_{mn}^p\}\{B_{mn}^p\}\{C_{mn}^p\}B_{mo}^pB_1^pB_2^p]'$
В0РН	$\mathbf{B}^{\mathbf{p}}_{0}$
вірн	В р
вгрн	B_2^p
CN1(I)	N _{ln''}
CN2(I)	N _{2n''}
CN3(I)	N _{3n''}
DNNN(I, J, K)	$\mathbf{d_n''_n'_n}$
ENNN(I, J, K)	e _{n''n'n}
EONN(I, J)	e _{0n'n}
TPNN(I, J)	$\mathbf{T_{n'n_k}}$
BMBAR	$\overline{\mathbf{M}}$

Fortran Variable Symbol Name

BKBAR \overline{K}

BTBAR \overline{T}

ABAR a

QBAR व

X0AQ $\left[(1 - \overline{a})/\overline{q} \right]$

XOSTR $|(1 - \overline{a})/\overline{q}|\omega^2 a/g$

WSTR $\omega/2\omega_{\mathbf{k}}$

WKBSQ $\tilde{\Omega}^2$

WKSQ $\tilde{\Omega}_{k}^{2}$

 $\mathtt{AMNK(I,J)} \qquad \mathtt{A}_{\mathtt{mn'k}}$

<u> </u>			08																									
		1						-		_													ļ		ļ	-	-	\vdash
					-											-	-										-	П
																										_		
		- 1						_														<u> </u>			<u> </u>	<u> </u>	<u> </u>	\vdash
			27 E7								-	-									-	-		-		-		-
l . l		1	02						-						+			-				-		T-		-	<u> </u>	
			ÓΤ																									
N																						<u> </u>	<u> </u>					
1.1	l					H					<u> </u>											8202	-			-	-	\vdash
8							-	-	<u> </u>	-		-						-	-			2	\vdash	\vdash		 	 - 	\vdash
1 1																						00						
-																						_			_	<u> </u>		
ı u	ш		_							_	-			<u> </u>								:	<u> </u>	-		<u> </u>		-
PAGE	DATE			-		-	-	-	-	-			-	-	-					-	-	27	-	-	-	-	 	
			09	\vdash		_	-	-		-		-	-			-	-			-	-	-	-	-	-	-		
																	-											
_																												
Form				<u> </u>	ļ.,	ļ	<u> </u>	ļ	<u> </u>	<u>_</u>	ļ	<u> </u>	<u> </u>	_	-		L			-	-		<u> </u>			 	<u> </u>	\vdash
6			$\vdash \vdash$			S	-			600+04	-	-		-		-					-	-	-	 	<u> </u>		-	-
اتما			\vdash			2			<u> </u>	7		<u> </u>			-		-				-	 		†	-	1	 	Н
										0																		
3			\square			4				0		\vdash	L	L_	\vdash							~		_			_	П
z			20	-		_	-	-				-	-							-	 	0	-	-	-		 	
KEYPUNCH						 	 	-	-	ហ	-	-	-	 		-	-			-	 	1091		-	<u> </u>	 		
7		-				_					_		-	<u> </u>		-	\vdash				-			1				
3		z																				23						
_		STATEMENT					ļ		_	L		ļ				_						2		ļ	_	<u> </u>		
w		ū	-			N	-			_	-	-	<u> </u>	-		-					-			├		-		-
1		A		-		00	-	3	-	000+30		 						-	-		-		\vdash	-	-	 	-	
2		15				٠.		•		+																		
¥		"				0		~		0												ļ	<u> </u>			_		
×	α.		04				├-	-		9			-	<u> </u>		N		0		_			-	0		0		
PROBLEM: Example	PROGRAMMER:			-	-	-	-	3 E	-			-	-			12		=		0	 	-4		,2IS		├		-
Σ	Σ		-	$\overline{}$		_	 	١,		_		-	-	<u> </u>	-	1,0					-	0	-	`~			-	
Ш	₩.			0				0								0				N		304		0				
面	Ö			0		25		0		_	_							O		山		22				0		
8	2		-	0	-	S	<u> </u>	0	-	ļ		\bigcirc	_	_		0	_	-		15		~	├	0	-		-	
	<u> </u>			1	-	4	-	1	-	-	-	215	-			11		-		ш,	-	0	-	11	-	╁		
>	. 1			1		=		7		400+07	<u> </u>	2				3下				-		20		3		L		
2			Oδ					1		+		<u> </u>								4								
O				上		<u> </u>	-	با	ļ.,.	0	<u> </u>	1-	_			۲				Σ	-	-		上		-		
F	12			-	-	├-	-	V		0	-	A			-	1		-		Q.		├	-	=				
LABORATORY	TUTE	_	-	RMAT	 	-	+	RMAT	-	•	-	RMA	-	 	 	RMA		-	\vdash	4		 	+	RMA		1	 	\vdash
	IE	A		0				0		~		0				-		m				L		ö		9		
$ \approx$	Į≝	3		LL				L				LL.				L		S						<u>u</u>		S		
	I	8	_	\subseteq	<u> </u>	-	<u> </u>	\vee	-	_	 	1	<u> </u>	-		\vdash	-	-	ļ	100		S		~	<u> </u>			
	RESEARCH INST	FORTRAN		-		5		-	-	-	 	 	-	-				34		រេ		8		1-	<u> </u>	8		\vdash
_	A	-	so	Q	·	-	1-	1	\vdash	-	1	1	-	 	 	-	-	```	-		-	4		1_		1		\vdash
S	ES			^				0								E				11		4		E				
COMPUTATIONS	1 2		<u> </u>	_C		1	1	S	_	1	L.	<u> </u>	lacksquare			1 -			ļ		 					_		
0	SOUTHWEST			عــا	-	-	1	1		1-	ļ		-	-	ļ.,	1		-	<u> </u>	-		9	 	上	-	-		
	3			ءَ	-	3	+-	*	├	-	-	+				9	-	3		0		 =	-	9 P		3		\vdash
d	: ∓		<u> </u>	-	-	00		E	1	1	 	†	-			$\frac{3}{2}$	-	5				 	1	Z	-	S		
-	. IS					N		,		3						1		•		ţ,	† ·			<u> </u>				
	10			Ø		:		Ш	1_			\bot			L_	0	_	4		ج	1	_		0		4		
1 4	:		01	1		0	-	7	1-	0	┼—	Z	-	2		0		3	ļ	-		-		0	<u> </u>	3		-
			F-	2	 	1-	\vdash	۲.	 	\vdash	+-	- -	-	141	-	Σ	}	t	-		-	-	+	Σ	 	 	 	\vdash
18				-		Γ^-						17				-				۶		00	L^-	-				
	_ l		1	0				0				Z				3				Z		0		3				
NOIT/	AUNIT	СОИ		-	<u> </u>	=	-	-	-		-	 	-	_	-	_	ļ	<u> </u>	ļ	ļ	 	10	 	1	ļ	_	<u> </u>	
			g	-		36	┼	-	 	25		+	-	S	 	 	-	0	 	-	+-	1	 	-		0	-	
1			-	1	 	6	+	+-	1-	1=	 	†-	1	 	 	1-	 	o	 	1	+-		1-	+	-	0	-	
										•								ŏ				Ŀ				Ö		
HENT	COM	၁			匚	0		匚	\bot	三		匚		L	匚		匚	3	匚	匚				匚		3		
																											,	

57	
【	
02 -	
	1
	
2	
┃ ┉┃ ┉┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ 	
DATE DATE 1 6 . 4 . 70 6 30	
09 09	++-+
	\Box
╻╶╻ ╻╻╻╻	
	
	\Box
	
9 09 09 00 00 00 00 00	1-1-1-
STATEMENT	
	
4	
i Ob -	+
EM: 3AMMER 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
N N N N N N N N N N N N N N N N N N N	
B B B B B B B B B B	+
1800 000 000 000 000 000 000 000 000 000	
PROBLEM: PROGRAMMER: 0.1734661	
	╫╫╌
08 -	
AATOR	
O S S L	111
-AB	1-1-1-
COMPUTATIONS LABORATORY SOUTHWEST RESEARCH INSTITUTE FORTRAN FORTRAN Mai, m=0, j=1, 5 (FØRMAT 5F15.0) Modern Main Main Main Main Main Main Main Mai	
- N - SO -	
XO L	
	
	
4 5 0	
	 -
5 01 -	
O I O I O I O I O I O I O I O I O I O I	
	1-1-1-
MOITAUNINUATION 6 CONTINUATION	 -
9 -	
00 00	
- 00	
m I C COMMENT	╂╾┼╼┼╾
The state of the s	

```
PROGRAM SLOSH (INPUT, OUTPUT, TAPE 60 = INPUT)
C
          DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES
                                                                                                                               SL000100
                                                                                                                               SL000200
C
          OF A PARTIALLY FILLED SHELL
C
          PROJECT 0 2 - 1 8 7 6
                                                                                                                               SL000300
C
          SEPTEMBER 1967
                                                                                                                               SL000400
C
                                                                                                                               SL000500
          MODIFIED 4 SEPTEMBER 1968
          PROJECT 0 2 - 2 3 3 2
                                                                                                                               SL000600
          COMMON PI, H/COM1/A, AO, CSCOW/COM2/UMJ( 5)/COM3/AONSQ/COM4/ALN(10)/ SL000700
                                                                                                                               SL000800
         1 COM5/ALNP(10)
          DIMENSION X1(10), X2(10), X08(10), X18(10),
                                                                                             ENB(10), ETA( 5),
                                                                                                                               SL000900
             CJH( 5), CNJ(10, 5), BMJN( 5,10), BNO(10), BN1(10), BN2(10),
                                                                                                                               SL001000
              BOON(10), BMMNN(10,10), Rim(10,10), R2M(10,10), R3M(10,10),
                                                                                                                               SL001100
              S1M(10,10), S2M(10,10), S3M(10,10), T1M(10,10), T2M(10,10),
                                                                                                                               SL001200
              73M(10,10),U1M(10,10),U2M(10,10),U3M(10,10),V1M(10,10),
                                                                                                                               SL001300
                                                                                                                               SL001400
         5
              v2m(10,10),v3m(10,10),w1m(10,10),w2m(10,10),w3m(10,10),
             UVW(33,33),RST(33,33),UWR(33,33),T(1000),UTRSV(33,36)
                                                                                                                               SL001500
          DIMENSION U4M(1,10), V4M(1,10), W4M(1,10), U5M(1,10), V5M(1,10),
                                                                                                                               SL001600
         1 W5M(1,10), U6M(1,10), V6M(1,10), W6M(1,10), X1M(10,1), Y1M(10,1),
                                                                                                                               SL001700
         2 Z1M(10,1), X2M(10,1), Y2M(10,1), Z2M(10,1), X3M(10,1), Y3M(10,1),
                                                                                                                               SL001800
         3 Z3M(10,1), R4M(1,10), S4M(1,10), T4M(1,10), R5M(1,10), S5M(1,10), 4 T5M(1,10), R6M(1,10), S6M(1,10), T6M(1,10), 
                                                                                                                               SL001900
                                                                                                                               SL002000
        ·5 Q1M(10,1),02M(10,1),P2M(10,1),Q2M(10,1),Q3M(10,1),P3M(10,1),
                                                                                                                               SL002100
                                                                                                                               SL002200
         6 Q3M(10,1),UTR(33,36),BMMNNK(4,10,10),BMMNNO(4,10,10)
           DIMENSION IROW(34), ICOL(33), AI(10), QBH(10), FH(33), APH(33)
                                                                                                                               SL002300
           DIMENSION WCPS(4), AMNK(33,4), CN1(10), CN2(10), CN3(10),
                                                                                                                               SL002400
         1 DNNN(10,10,10), ENNN(10,10,10), EONN(10,10), TPNN(10,10)
                                                                                                                               SL002500
                                            GUESS(33,1), VECTOR(33, 4), EIGVAL( 4),
                                                                                                                               SL002600
          DIMENSION
             NITER( 4), US(33,8), HH(33,29), NAKSR( 4), EIGCPS( 5)
                                                                                                                               SL002700
                                                                                                                               SL002800
          PI = 3.14159265
           G = 386,0
                                                                                                                               SL002900
           EPS = 1.0E-04
                                                                                                                               SL003000
           SMLST = 1.0E#07
                                                                                                                               SL003100
                                                                                                                               SL003200
           NGUESS # 0
           NMODE = 1
                                                                                                                               SL003300
           NITRSP = 100
                                                                                                                               SL003400
           EPSP = 0.5E=08
                                                                                                                               SL003500
           AITKEN = .9
                                                                                                                               SL003800
                                                                                                                               SL003900
           NTAPE = 1
  1000 READ 200, RHO, RHOS, AO, SH, SHS, SL
                                                                                                                               SL004000
    200 FORMAT (7F10.0)
                                                                                                                               SL004100
           IF (EOF, 60)700,705
                                                                                                                               SL004200
    700 STOP
                                                                                                                               SL004300
    705 READ 205, PO, ENU, E, BMSTR, CO
                                                                                                                               SL004400
    205 FORMAT (2F10,0,3E12.3)
                                                                                                                               SL004500
           READ 215, NJ.N
                                                                                                                               SL004600
    215 FORMAT(315)
                                                                                                                               SL004700
           N3 = 3 + N + 3
                                                                                                                               SL004800
           NDIM = 33
                                                                                                                               SL004900
           RHO = RHO/386.
                                                                                                                               SL005000
           RHOS # RHOS/386.
                                                                                                                               SL005100
           A = A0+0.5*SHS
                                                                                                                               SL005200
           BMS # 2.0*PI*RHOS*A*SHS*SL
                                                                                                                               SL005300
           HS # SHS/A
                                                                                                                               SL005400
           CS = SQRTF(E/RHOS)
                                                                                                                               SL005500
                                                                                                                               SL005600
           H = SH/A
                                                                                                                               SL005700
           SLSTR = SL/A
           AONSQ = 0,5+SLSTR
                                                                                                                               SL005800
           X10 = 0.5 * SLSTR
                                                                                                                               SL005900
                                                                                                                               SL006000
           x20 = SLSTR**2/3.0
           PRINT 505
                                                                                                                               SL006100
    505 FORMAT (*1 PROJECT 0 2 - 2 3 3 2 *)
                                                                                                                               SL006200
           PRINT 530, SH, SHS, SL, AO, A, PO, BMSTR, RHO, RHOS, E, CO, ENU
                                                                                                                               SL006300
```

```
530 FORMATE
                                                    *0 H = *,E10.3,* (IN)*,17X,*HS = *,E10.3,*
                                                                                                                                              SL006400
        1* (IN)*,16X,*L = *,E10.3,* (IN)*//3X,*A0 = *,E10.3,* (IN)*,18X,
                                                                                                                                              SL006500
        2*A = *, E10.3, * (IN)*//* P0 = *, E10.3, 18H (LB-SEC**2/IN**4), 3X,
                                                                                                                                              SL006600
        36HM** = ,E10.3//* RHO * *,E10.3,18H (LB*SEC**2/IN**4),2x,
                                                                                                                                              SL006700
        4 *RHOS = *,E10.3.18H (LB-SEC**2/IN**4)//4X, *E = *,E10.3,
                                                                                                                                              SL006800
                                                                                                                                              SL006900
        5 11H (LB/IN++2), 11X, +C0 = *, E10.3, * (IN/SEC) *, 11X, *NU = *, E10.3)
          KOPT = 0
                                                                                                                                              SL007000
2000 READ 210, W.BM.CPO.NOPT.M
                                                                                                                                              SL007100
  210 FORMAT (3F10,0,215)
                                                                                                                                              SL007200
          READ 220, (UMJ(1), I=1, NJ)
                                                                                                                                              SI 007300
  22n FORMAT (5F15.0)
                                                                                                                                              SI 007400
          RM # BM/386.
                                                                                                                                              SL007500
          IF (M)3,4,3
                                                                                                                                              SL007600
      4 BMSTR = (BM*(1.0*ENU**2))/(2.0*PI*RHOS*A**3*HS)
                                                                                                                                              SL007700
          JTER = 1
                                                                                                                                              SL007900
          W = .996 * (2.*WCPS(JTER))
                                                                                                                                              SL008000
          WRAD = 2.*PI*W
                                                                                                                                              SL008100
                                                                                                                                              SL008200
          WKB = WCPS(JTER)
          WKSQ = (1.-ENU*+2)*(2.*PI*WKB)**2*(A/CS)**2
                                                                                                                                              SL008300
          GO TO 2
                                                                                                                                              SL008400
      3 CONTINUE
                                                                                                                                              SL008500
          DO 7000 ITER=1.1
                                                                                                                                              SL008600
          IF (KOPT)6000,6005,6000
                                                                                                                                              SL008700
6000 W = .996*( WCPS(ITER))
                                                                                                                                              SL008800
          WKB = WCPS(ITER)
                                                                                                                                              SL008900
          WKSQ = (1,-ENU++2)+(2,+PI+WKB)++2+(A/CS)++2
                                                                                                                                              SL009000
6005 WRAD = 2.*PI*W
                                                                                                                                              SL009100
      2 OMEGA = (WRAD+A)/CS
                                                                                                                                              SL009200
          WSO = OMEGA**2
                                                                                                                                               SL009300
                                                                                                                                              SL009400
          WKBSQ = (1.0 \times ENU \times ENU) \times WSQ
          CSCOW = (CS/CO)+OMEGA
                                                                                                                                              SL009700
          DO 10 I=1,N
                                                                                                                                              SL009800
          ALN(I) = (I + PI + A)/SL
                                                                                                                                               SL009900
          ALNP(I) = (I*PI*A)/SL
                                                                                                                                              SL010000
                                                                                                                                              SL010100
          x1(1) = (2.0/(S|STR*ALNP(1)**2))*(-1.0*(*1)**1)
                                                                                                                                              SL010200
          \chi^2(1) = (4.0/ALN(1) **2) *(*1) **1
          XOB(I) = (2.0/(SLSTR*ALNP(I)))*(1.0-(-1)**I)
                                                                                                                                              SL010300
          x1R(1) = (2.0*(-1)**(1*1))/ALNP(1)
                                                                                                                                               SL010400
                                                                                                                                               SL010500
    10 CONTINUE
                                                                                                                                               SL010600
          DO 5 1=1.N
                                                                                                                                               SL010700
          TM1 = ALNP(I)+CSCOW
                                                                                                                                               SL010800
          TM2 = ALNP(1)-CSCOW
          ENB(I) = (((1.0 - COSF(TM1 + H))/TM1) + ((1.0 - COSF(TM2 + H))/TM2))/(2.0 + COSF(TM2 + H))/TM2)/(2.0 + COSF(TM2 + H))/(2.0 + COSF(
                                                                                                                                               SL010900
                                                                                                                                               SL011000
        1 ADNSQ)
                                                                                                                                               SL011100
      5 CONTINUE
                                                                                                                                               SL011200
          DO 15 I=1.NJ
          ETA(1) = SQRTF(ABSF(UMJ(1)++2+CSCOW++2))
                                                                                                                                               SL011300
                                                                                                                                               SL011400
          IF (UMJ(I)-CSCOW)20,25,25
                                                                                                                                            - SL011500
    25 TM1 = EXPF(ETA(1)\pmH)
          CJH(I) = 0.5*(TM1+(1.0/TM1))
                                                                                                                                               SL011600
                                                                                                                                               SL011700
          GO TO 15
    20 \text{ CJH(I)} = \text{COSF(ETA(I)*H)}
                                                                                                                                               SL011800
                                                                                                                                               SL011900
    15 CONTINUE
                                                                                                                                               SL012000
          DO 30 1=1,N
                                                                                                                                               SL012100
          TM1 = ALNP(I)+H
          SN = SINF(TM1)
                                                                                                                                               SL012200
                                                                                                                                               SL012300
          CN # COSF (TM1)
                                                                                                                                               SL012400
          DO 30 J=1.NJ
                                                                                                                                               SL012500
          IF (UMJ(J)-CSCOW)35,40,40
    40 TM2 = ETA(J)+H
                                                                                                                                               SL012600
                                                                                                                                               SL012700
          TM3 = EXPF(TM2)
          CSH = 0.5 + (TM3 + (1.0/TM3))
                                                                                                                                               SL012800
```

```
SNH = 0.5*(TM3-(1.0/TM3))
                                                                        SL012900
   CNJ(I,J) = (F/(AONSQ+(TM2++2+TM1++2)))+(TM1+CN+CSH-TM1-TM2+SN+SNH)SL013000
   GO TO 30
                                                                        SL013100
35 TM2 = ALNP(I)-ETA(J)
                                                                        SL013200
                                                                        SL013300
   TM3 = ALNP(I) + ETA(J)
   CNJ(1,J) = (0.5/AONSO) + (((1.0-COSF(TM3+H))/TM3) + ((1.0-COSF(TM2+
                                                                        SL 013400
  1 H))/TM2))
                                                                        SL013500
30 CONTINUE
                                                                        SL013600
   no 45 fm1, NJ
                                                                        SL013700
   DO 45 J=1.N
                                                                        SL013800
   SUMX = 0.
                                                                        SL 013900
   SUMY = 1.0E-50
                                                                        SL 014000
   K = 0
                                                                        SL014100
60 TRM = ((-1)++K+DKN(K,J)+EMKJ(M,K,I))/CJH(I)
                                                                       SL014200
   SUMX = SUMX+TRM
                                                                        SL014300
   IF (ABSF((SUMX-SUMY)/SUMY)-EPS)50,50,55
                                                                        SL014400
55 SUMY = SUMX
                                                                        SL014500
                                                                        SL014600
   K = K+1
   IF (K-100)60,50,50
                                                                        SL014700
YMUS = (L,I)NLMB 05
                                                                        SL014800
45 CONTINUE
                                                                        SL014900
   DO 65 I=1,N
                                                                        SL015000
   TM1 = (1.0-ENU+ENU)+WSQ
                                                                        SL015100
   TM2 = (A/SL) = 0.5 + BMSTR + WSQ
                                                                        SL015200
   TM3 == (A/SL)+(-1)++1+BMSTR+WSQ
                                                                        SL015300
   TM4 == (A/SL) +BMSTR+WSQ
                                                                        SL015400
   TM5 = 1.0 - (A/SL) + X10
                                                                        SL015500
   TM6 = 1.0 + (M**2/(2.0*(1.0+ENU)*WSQ))
                                                                        SL015600
   TM7 = 0.5*(1.0-ENU)*M*M*X20
                                                                        SL015700
   RNO(1) = -((A/SI)++2+((2.0+TM1+X20-TM7)/(2.0+TM1))+(TM3/TM2)+TM5+ SL015800
  1 TM6)/(1,0+((2,0+TM1+X20-TM7)/(2,0+TM1))+(TM4/TM2)+(A/SL)++2-
                                                                        SI 015900
     TM5+TM6)
                                                                        SL016000
   BN1(I) = +(A/SL)+(1.0+BN0(I))
                                                                        SL016100
   BN2(1) = ((TM4*BN0(1)*TM3)*(A/SL)**2)/TM2
                                                                        SL016200
65 CONTINUE
                                                                        SL016300
                                                                        SL016400
   DO 66 1=1,N
   SUMX = 0.
                                                                        SL016500
   SUMY = 1.0E-50
                                                                        SL016600
   K = 1
                                                                        SL016700
69 TRM = (-1)**K*DKN(K,I)*EMKJ(M,K,0)
                                                                        SL016800
   SUMX = SUMX+TRM
                                                                        SL016900
                                                                        SL017000
   IF (ABSF((SUMX-SUMY)/SUMY)-EPS)67,67,68
68 SUMY = SUMX
                                                                        SL017100
   K = K+1
                                                                        SL017200
   IF (K=100)69,67,67
                                                                        SL017300
67 BOON(I) = SUMY/COSF(CSCOW+H)
                                                                        SL017400
66 CONTINUE
                                                                        SL017500
                                                                        SL017600
   DO 70 I=1,N
   DO 70 J=1.N
                                                                        SL017700
   SUMX = 0.
                                                                        SL017800
   SUMY = 1.0E-50
                                                                        SL017900
                                                                        SL018000
   IF (M)86,86,87
86 K = 1
                                                                        SL018100
   GO TO 85
                                                                        SL018200
87 K=0
                                                                        SL018300
                                                                        SL018400
85 TRM = RMK(M,K) *DKN(K,J)*DKNB(K,I)
                                                                        SL018500
   SUMX = SUMX+TRM
                                                                        SL018600
   IF (ABSF((SUMX-SUMY)/SUMY)-EPS)75,75,80
                                                                        SL018700
80 SUMY = SUMX
                                                                        SL018800
   K = K+1
   IF (K-100)85,85,75
                                                                         SL018900
                                                                        SL019000
75 SUMZ = 0.
```

```
10 90 L=1,NJ
                                                                              SL019100
     CALL BES(M, UMJ(L), 0, XJO, T)
                                                                              SL019200
     TRM = XJ0*BMUN(L*J)*CNJ(I*L)
                                                                              SL019300
     SUMZ = SUMZ+TRM
                                                                              SL019400
 90 CONTINUE
                                                                              SL019500
     IF (M)91,92,91
                                                                              SL019600
  92 CALL BES(0,CSCOW,0,XJ0,T)
                                                                              SL019700
     CALL BES(1,CSCOW,0,XJ1,T)
                                                                              SL019800
     TRM = -BOON(J)*ENB(I)*(((2.0*ENB(I)))/(CSCOW**2*COSF(CSCOW*H)))-
                                                                              SL019900
      ((XJO+DKNB(O,I))/(CSCOW+XJ1)))+DKN(O,J)
                                                                              SL020000
        BMMNN(1,J) = ((RHO+A)/(RHOS+SHS))+(SUMY-SUMZ+TRM)
                                                                              SL020100
     GO TO 70
                                                                              SL020200
  91 TRM = 0,
                                                                              SL020300
        BMMNN(I,J) = ((RHO*A)/(RHOS*SHS))*(SUMY-SUMZ*TRM)
                                                                              SL020400
        ( ITER )93,78,93
                                                                              SL020500
  93 CONTINUE
                                                                              SL020600
     TF (KOPT)6010,6015,6010
                                                                              SL020700
6010 \text{ RMMNNO(ITER,I,J)} = \text{RMMNN(I,J)}
                                                                              SL020800
     GO TO 70
                                                                              SL020900
6015 BMMNNK(ITER, I, J) = BMMNN(I, J)
                                                                              SL021000
  70 CONTINUE
                                                                              SL021100
     IF ( M )6025,6020,6025
                                                                              SL021200
6025 CONTINUE
                                                                              SL021300
     IF (KOPT)2000,6020,2000
                                                                              SL021400
6020 CONTINUE
                                                                              SL021500
                                                                              SL021600
     DO 95 I=1,N
     DO 95 J=1,N
                                                                              SL021700
     IF (I=J)100,105,100
                                                                              SL021800
                                                                              SL021900
105 \text{ R1M}(I,J) = 1,0+BMMNN(I,J)
     GO TO 95
                                                                              SL022000
 100 R1M(I,J) = BMMNN(I,J)
                                                                              SL022100
                                                                              SL022200
  95 CONTINUE
     no 110 [=1,N
                                                                              SL022300
     DO 110 J=1.N
                                                                              SL022400
                                                                              SL022500
     IF (I+J)115,120,115
 120 \text{ S2M}(1,J) = 1,
                                                                              21055900
     GO TO 110
                                                                              SL022700
 115 S2M([,J) = 0.
                                                                              SL022800
 110 CONTINUE
                                                                              SL022900
     DO 125 I=1,N
DO 125 J=1,N
                                                                              SL023000
                                                                              SL023100
     TM1 = 1.0 + (HS * HS * (ALN(J) * * 2 * M * M ) * * 2)/12.
                                                                              SL023200
     TM2 = (P0/E)*(0.5*ALN(J)**2*M*M)
                                                                              SL023300
                                                                              SL023400
     IF (I+J)130,135,130
 135 X3N = (A/SL)*(.5*H**2-((1,-COS(2,*ALN(J)*H))/(4,*ALN(J)**2)))
                                                                              SL023500
     TM3 = X3N \times M \times M \times (RHO \times G \times A/E)
                                                                              SL023600
     U1M(I_{J}J) = TM1+(TM2+TM3-((CPO *ALN(J)**2)/(2,0*PI*A*A*E)))*((1.0* SL023700)
    1 FNU**2)/HS)
                                                                              SL023800
                                                                              SL023900
     GO TO 125
 130 \text{ TM3} = ALN(J) - ALNP(I)
                                                                              SL024000
                                                                              SL024100
     TM4 = ALN(J) + ALNP(I)
                                                                              SL024200
     x3N = (A/SL) + (((1.-cos(TM3+H))/TM3++2) - ((1.-cos(TM4+H))/TM4++2))
     U1M(I,J) = (X3N+M+M)+((1.0-ENU++2)/HS)+(RHG+G+A/E)
                                                                              SL024300
 125 CONTINUE
                                                                              SL024400
                                                                              SL024500
     no 140 I=1,N
     DO 140 J=1.N
                                                                              SL024600
     IF (I-J)145,150,145
                                                                              SL024700
 150 U^{2M}(I,J) = -ENU*ALN(J)
                                                                              SL024800
     T3M(1,J) = 1.0
                                                                              SL024900
     U3M(I,J) = M
                                                                              SL025000
     V2M(I,J) = ALN(J)**2*0.5*(1.0*ENU)*M*M
                                                                              SL025100
     W1M(I,J) = M
                                                                              SL025200
```

```
W2M(I_*J) = -0.5*(1.0*ENJ)*M*ALN(J)
                                                                           SL025300
    W3M(I,J) = 0.5*(1.0+ENU)*ALN(J)*+2+M+M
                                                                           SL025400
    GO TO 140
                                                                           SL025500
145 \text{ U2M(I,J)} = 0.
                                                                           SL025600
    73M(1,J) = 0.
                                                                           SL025700
    U3M(1,J) = 0.
                                                                           SL025800
    V2M(I,J) = 0.
                                                                           SI 025900
    W1M(I,J) = 0,
                                                                           SL026000
    W^{2M}(I,J) = 0
                                                                           SL026100
    W3M(I,J) = 0.
                                                                           SL026200
140 CONTINUE
                                                                           SL026300
    no 155 [=1,N
                                                                           SL 026400
    PO 155 J=1.N
                                                                           SL026500
    R^{2}M(1,J) = 0,
                                                                           SL026600
    R3M(I,J) = 0.
                                                                           SL026700
    S1M(1,J) = 0
                                                                           SL026800
    S^{3M}(1,J) = 0,
                                                                           SL026900
    T1M(1,J) = 0.
                                                                           SL027000
    T2M(I,J) = 0.
                                                                           SL027100
155 CONTINUE
                                                                           5027200
    DO 160 I=1,N
                                                                           SL027300
    DO 160 J=1,N
                                                                           SL027400
    IF (1-J)161,162,161
                                                                           SL027500
162 V1M(I,J) = -ALN(J) +ENU
                                                                           SL027600
    GO TO 160
                                                                           SL027700
161 \ V1M(I,J) = 0.
                                                                           SL027800
160 CONTINUE
                                                                           SL027900
    DO 165 I=1.N
                                                                           SL028000
    \chi_{1M(1,1)} = \chi_{2M(1,1)} = \chi_{3M(1,1)} = 0
                                                                           SL028100
                                                                           SF058500
    0.4M(1,1) = 0.5M(1,1) = 0.6M(1,1) = 0.
    V5M(1,I) = W5M(1,I) = V6M(1,I) = W6M(1,I) = W4M(1,I) = 0.
                                                                           SL028300
    R4M(1,1) = S4M(1,1) = T4M(1,1) = 0.
                                                                           SL028400
    R5M(1,1) =
                                                                           SL028500
                            T5M(1,1) = 0.
    R6M(1,1) = S6M(1,1) = T6M(1,1) = 0.
                                                                           SL028600
                                                                           SL028700
    01M(1,1) = 02M(1,1) = 03M(1,1) = 0
    P^{1}M(7,1) = P^{3}M(7,1) = Q^{1}M(7,1) = Q^{3}M(7,1) = 0
                                                                           SL028800
    Y1M(I,1) = ENU+x0B(I)
                                                                           SL028900
                                                                           SL029000
    71M(1,1) = ENU+x1R(1)
    Y^{2M(1,1)} = M**2*(.5*(1.*ENU))*X^{1}(1)
                                                                           SL029100
    Z2M(I,1) = M**2*(.25*(1,-ENU))*X2(I)
                                                                           SL029200
                                                                           SL029300
    y3M(1,1) = M*(.5*(1.+ENU))*X0B(1)
                                                                           SL029400
    73M(I,1) = M*(,5*(1,+ENU))*X1B(I)
    P2M(I,1) = X1(I)
                                                                           SL029500
                                                                           SL029600
    02M(1,1) = .5*X2(1)
    V4M(1,1) = -1,
                                                                           SL029700
    S5M(1.1) = (*1)**I/(1.-ENU**2)
                                                                           SL029800
                                                                           SL029900
    no 165 J=1,N
                                                                           SL 030000
    IF (1+J)170,175,170
175 V3M(I,J) =
                   #ALN(J) #0.5*M*(1.0+ENU)
                                                                           SL030100
                                                                           SL030200
    GO TO 165
                                                                           SL030300
170 \text{ V3M}(I,J) = 0.
165 CONTINUE
                                                                           SL030400
                                                                           SL030500
    X5M *
                 Z4M = 04M = P4M = Q4M = P5M = 0.
    X4M = -1.
                                                                           SL030600
    Y4M = SL/A
                                                                           SL030700
                                                                           SL030800
    Y5M = 1,/BMSTR
                                                                           SL030900
    25M = Y4M+Y5M
    05M = 1./(1, =ENU*+2)
                                                                           SL031000
                                                                           SL031100
    05M = (.5*(SL/A)**2)/(1.-ENU**2)
    Y6M = M++2+(,5+(1.-ENU))+(-(SL/A)+X10)
                                                                           SL031200
                                                                           SL031300
    Z6M = -(1,-.5*(M**2*(1,-ENU))*.5*X20)
                                                                           SL031400
    X6M # .5*M**2*(1.=FNU)
```

	06M = 1,	SL0<1500
	P6M = X10-SL/A	SL031600
		The state of the s
	06M = .5*X20	St 031700
	IF (M)166,166,167	SL031800
167	X5M = 1,	SL031900
	Y5M = 0,	SL032000
	Z5M = .5+(SL/A)++2	SL032100
	05M = 0.	SL032200
	P5M = 0.	SL032300
	Q5M = 0.	SL032400
	00 168 1=1,N	SL032500
	V5M(1,I) # (-1)++I	SL032600
	S5M(1,1) = 0.	SL032700
140	CONTINUE	SL032800
	00 185 1=1.N	\$1.032900
100	7K = I+V	SL033000
	JL = I+?+N	SL033100
	IJ = 3+N+1	SL033200
	1K = 3+N+2	SL033300
		SL033400
	11 = 3*N*3	SL033500
	UVW(I,IJ) = X1M(I,1)	SL033600
	UVW(I,IK) = Y1M(I,1)	SL033700
	tiVW(I,IL) = Z1M(I,1)	
	UVW(JK,IJ) = X2M(I,1)	SL033800
	$(VW(JK,IK) = \lambda SW(1'1)$	\$L033900
	$\forall \forall \forall (JK,JL) = Z2m(1,1)$	SL034000
	UVW(JL,JJ) = X3M(I,1)	SL034100
	UVW(JL, TK) = Y3M(I, 1)	SL034200
	IVW(JL, IL) = Z3M(I, 1)	SL034300
	UVW(IJ,I) = U4M(1,I)	SL034400
	UVW(IJ,JK) = V4M(1,I)	SL034500
	UVW(IJ,JL)= #4M(1,1)	SL034600
	UVW(JK,J) = U5M(1,J)	SL034700
	UVW(IK, JK) = V5m(1, I)	SL034800
	UVW(TK,JL) = W5M(1,T)	SL034900
	UVW(IL, I) = U6m(1, I)	SL035000
	VW(1L,JK) = V6M(1,1)	SL035100
	UVW(IL,JL) = W6M(1,I)	SL035200
	DO 185 J=1.N	SL035300
	IK # J+N	SL035400
	IL = J+2+N	SL035500
	UVW(I,J) = U1M(I,J)	SL035600
	UVW(I,JK) = V1M(J,J)	SL035700
	UVW(I,IL) = W1m(I,J)	SL035800
	UVW(JK, J) = U2M(I, J)	SL035900
	UVW(JK,IK) = V2M(I,J)	SL036000
	UVW(JK,IL) = W2M(I,J)	SL036100
	UVW(JL,) = U3M(I,J)	SL036200
	UVW(JE,IK) = V3M(I,J)	SL036300
	UVW(JL,IL) = W3M(I,J)	SL036400
		SL036500
185	5 CONTINUE	SL036600
	no 190 j=1,N	SL036700
	JK # I+N	SL036800
	JL = I+2+N	SL036900 SL036900
	IJ = 3*N+1	_
	IK = 3*N+2	SL037000
	IL = 3+N+3	SL037100
	RST(I,IJ) = O1M(I,1)	SL037200
	RST(I,IK) = P1M(I,1)	SL037300
	RST(I,IL) = Q1M(I,1)	SL037400
	RST(JK, JJ) = O2M(J, 1)	SL037500
	RST(JK,IK) = P2m(I,1)	SL037600

```
RST(Jk,IL) = Q2M(I,1)
                                                                            SL037700
     RST(JL,IJ) = 03M(I,1)
                                                                            SL037800
     RST(JL,JK) = P3M(J,1)
                                                                            SL037900
     RST(JL,IL) = Q3M(I.1)
                                                                            SI.038000
     RST(JJ,I) = R4M(1,I)
                                                                            SL 0 38100
     RST(IJ,JK) = S4M(1,I)
                                                                            SL038200
     PST(IJ,JL) = T4M(1,I)
                                                                            SL038300
     RST(Ik,I) = R5m(1,I)
                                                                            SL038400
     RST(IK,JK) = S5M(1,I)
                                                                            SL038500
     RST(IK,JL) = T5M(1,I)
                                                                            SL038600
     RST(\{L,I\}) = R6M(1,I)
                                                                            SL038700
     RST(IL,JK) = S6m(1,I)
                                                                            SL038800
     RST(IL,JL) = T6M(1,I)
                                                                            SL038900
     no 190 J=1,N
                                                                            SL039000
     IK = J+N
                                                                            SL039100
     IL = J+2+N
                                                                            SL039200
     RST(I,J) = RIM(I,J)
                                                                            SL039300
     RST(I,IK) = SIM(I,J)
                                                                            SL039400
     RST(I,IL) = Tim(I,J)
                                                                            SL039500
     RST(JK,J) = H2M(I,J)
                                                                            SL039600
     RST(JK,IK) = S2M(I,J)
                                                                            St 039700
     RST(JK, IL) = T2M(I,J)
                                                                            SL039800
     RST(JL,J) = R3M(I,J)
                                                                            SL039900
     RST(JL,[K) = S3M(I,J)
                                                                            SL040000
     RST(JL,IL) = T3M(I,J)
                                                                            SL040100
190 CONTINUE
                                                                            SL040200
     1J = 3+N+1
                                                                            SL 040300
     IK = 3+N+2
                                                                            SL040400
     IL = 3+N+3
                                                                            SL040500
                                                                            SL040600
     UVW(IJ,IJ) = X4M
     UVW(IJ, IK) = Y4M
                                                                            SL040700
                                                                            SL040800
     UVW(IJ,JL) = Z4M
     UVW(IK, IJ) = X5M
                                                                            SL040900
     UVW(IK, IK) = Y5M
                                                                            SL041000
                                                                            SL041100
     UVW(IK, IL) = 25M
     WVW(IL, IJ) = X6M
                                                                            SL041200
     UVW(IL, IK) = Y6M
                                                                            SL041300
                                                                            SL041400
     UVW(IL, IL) = Z6M
     RST(IJ,IJ) = 04M
                                                                            SL041500
     RST(IJ, IK) = P4M
                                                                            SL041600
     RST(IJ,IL) = Q4M
                                                                            SL041700
     RST(JK,JJ) = 05M
                                                                            SL041800
     RST(IK,IK) = P5M
                                                                            SL041900
                                                                            SL042000
     RST(IK,IL) = Q5M
     RST(IL.IJ) = 06M
                                                                            SL042100
                                                                            SL042200
     RST(IL, IK) = P6M
                                                                            SL042300
     RST(IL,IL) = 06M
     IF (NOPT)4000,4005,4000
                                                                            SL042400
4000 PRINT 4010
                                                                            SL042500
                                                                            SL042600
4010 FORMAT (1H1, + ( U ) MATRIX +)
     CALL MPRINT (UVW, N3, N3, NDIM)
                                                                            SL042700
     PRINT 4015
                                                                            SL042800
                                                                            51.042900
4015 FORMAT (1H1, * ( R ) MATRIX +)
     CALL MPRINT (RST, N3, N3, NDIM)
                                                                            SL043000
4005 CONTINUE
                                                                            SL043100
     IF ( M )198,199,198
                                                                            SL043200
                                                                            SL043300
 19a CONTINUE
     CALL MATINY (UVW. IROW, ICOL, N3. NDIM, SMLST)
                                                                            SL043400
     DO 192 I=1,N3
DO 192 J=1,N3
                                                                            SL043500
                                                                            SL043600
     SUM = 0,
                                                                             SL043700
                                                                            SL043800
     DO 191 K=1,N3
```

```
SUM
              = SUM
                          * UVW(I,K) +RST(K,J)
                                                                           SL043900
 191 CONTINUE
                                                                           SL044000
     UTR(I,J) = SLM
                                                                           SL044100
     UTRSV(I,J) = UTR(I,J)
                                                                           SL044200
192 CONTINUE
                                                                           SL 044300
     IF (NOPT) 4020, 4025, 4020
                                                                           SL044400
4020 PRINT 4030
                                                                           SL044500
4030 FORMAT (1H1, + ( U ) MATRIX INVERSE +)
                                                                           SL044600
     CALL MPRINT (UVW.N3,N3,NDIM)
                                                                           SL044700
     PRINT 4035
                                                                           SL044800
4035 FORMAT (1H1, + (U) INVERSE X (R) +)
                                                                           SL044900
     CALL MPRINT (UTR, N3, N3, NDIM)
                                                                           SL045000
4025 CONTINUE
                                                                           SL045100
     CALL MITERS (UTR. NTAPE, N3. GUESS, NGUESS, NMODE, VECTOR, EIGVAL,
                                                                           SL045200
    1 NITER, MITESP, EPSP, US, HH, MAXR, NC, AITKEN, NAKSR, UTRSV)
                                                                           SL045300
     DO 194 [=1.1
                                                                           SL045400
     XLDA = EIGVAL(I).
                                                                           SL045500
     TM1 = (CS/A)/SORT(1,-ENU**2)
                                                                           SL045600
     OMEGR = SORT(ABS(1./XLDA))+TM1
                                                                           SL045700
     OMEGC = OMEGR/(2.*PI)
                                                                           SL045800
     IF ( ITER )618,619,619
                                                                           SI 045900
 619 EIGCPS(I) = OMEGO
                                                                           SL046000
 618 PRINT 615, I.XI DA, OMEGR, OMEGC
                                                                           SL046100
 615 FORMAT (15,3E20.8)
                                                                           SL046200
 194 CONTINUE
                                                                           SL046300
     W = EIGCPS(ITER )
                                                                           SL046400
     IF ( ITER )197,7000,197
                                                                           SL046500
 197 WCPS(ITER) = (SORT(ABS(1./EIGVAL(ITER)))+TM1)/(2.*P])
                                                                           SL046600
     DO 196 I=1,N3
                                                                           SL046700
        AMNK(I, ITER) = VECTOR(I, ITER)
                                                                           SL046800
196 CONTINUE
                                                                           SL046900
7000 CONTINUE
                                                                           SL047000
     KOPT = 1
                                                                           SL047100
     GO TO 3
                                                                           SL047200
 199 CONTINUE
                                                                           SL047300
                                                                           SL047400
     no 195 Tm1,N3
     DO 195 J=1,N3
                                                                           SL047500
     UWR(I,J) = UVW(I,J)-WKBSQ*R5T(I,J)
                                                                           SL047600
 195 CONTINUE
                                                                           SL047700
     no 600 j=1.N
                                                                           SL047800
     J = N + I
                                                                           SL047900
     K = 2+N+1
                                                                           SL048000
     AI(I) = ((-CSCOW+SINF(AUNP(I)+H)+AUNP(I)+SINF(CSCOW+H))/
                                                                           SL048100
    1 (ALNP(1)**2-CSCOW**2))/AONSQ
                                                                           SL048200
     OBH(I) = (RHC*A*OMEGA*C0*AI(I))/(RHOS*SHS*CS*COSF(CSCOW*H))
                                                                           SL048300
     FH(I) = (1.-ENU+2)*QBH(I)
                                                                           SL048400
     FH(J) = 0,
                                                                           SL048500
     FH(K) = 0
                                                                           SL048600
 600 CONTINUE
                                                                           SL048700
     FH(3*N+1) = +1.
                                                                           SI 048800
     FH(3+N+2) = 0.
                                                                           SL048900
     FH(3+N+3) = 0,
                                                                           SL049000
     IF (NOPT)4045,4050,4045
                                                                           SI 849180
4045 PRINT 4055
                                                                           SL049200
4055 FORMAT (1H1, *(U) - OMEGABSQ (R) +)
                                                                           SL049300
     CALL MPRINT (UWR.N3.N3.NDIM)
                                                                           SL049400
                                                                           SL049500
     PRINT 4060
4060 FORMAT (+1 MATRIX (I)+)
                                                                           SL049600
     PRINT 4065, (AI(1), I=1,N)
                                                                           SL049700
4065 FORMAT (5E20.8)
                                                                           SL049800
     PRINT 4070
                                                                           SL049900
4070 FORMAT (+0 MATRIX QHATB(I)+)
                                                                           SL050000
```

```
PRINT 4065, ($BH(I), I=1, N)
                                                                           SL050100
     PRINT 4075
                                                                           SL050200
4075 FORMAT (+0 MATRIX (F)+)
                                                                           SL050300
     PRINT 4065, (FH(T), I=1,N3)
                                                                           SL050400
4050 CONTINUE
                                                                           SL050500
     CALL MATINY (UWR, IROW, ICOL, N3, NDIM, SMLST)
                                                                           SL050600
     DO 605 I=1,N3
                                                                           SL050700
     APH(1) = 0.
                                                                           SL050800
     DO 610 J=1,N3
                                                                           SL050900
     APH(I) = APH(I) + UWR(I,J) + FH(J)
                                                                           SL051000
610 CONTINUE
                                                                           SL051100
 605 CONTINUE
                                                                           SL051200
     TF (NOPT)4080,4085,4080
                                                                           SL051300
4080 PRINT 4090
                                                                           SL051400
4090 FORMAT (+0 APHAT(1) +)
                                                                           SL051500
     PRINT 4065, (APH(I), I=1,N3)
                                                                           SL051600
     PRINT 4065, (ALN(I), I=1,N)
                                                                           SL051700
     PRINT 4065, (x1(1), 1=1, N)
                                                                           SL 051800
     PRINT 4065, (X2(I), I=1,N)
                                                                           SL051900
     PRINT 4065, (X0B(1), I=1,N)
                                                                           SL052000
     PRINT 4065, (x1r(1), I=1, N)
                                                                           SL052100
     PRINT 5040
                                                                           SL052200
5040 FORMAT (1H1, +(U) + OMEGABSO (R), INVERSE +)
                                                                           SL052300
     TALL MPRINT (UWR, N3, N3, NDIM)
                                                                           SL052400
4085 CONTINUE
                                                                           SL052500
     ROPH = APH(3*N+1)
                                                                           SL052600
     P1PH = APH(3*N+2)
                                                                           SL052700
     B2PH = APH(3*N+3)
                                                                           SL052800
     no 225 I=1,N
                                                                           SL052900
     J = N+1
                                                                           SL053000
     CN1(I) = B2PF*X1B(I)*B1PH*X0B(I)*ALN(I)*APF(J)*ENU*APH(I)
                                                                           SL053100
     CN2(I) = APH(I) + ENU + (B2PH + x1B(I) + B1PH + x0B(I) + ALN(I) + APH(J))
                                                                           SL053200
                                                                           SL053300
     CN3(1) = ENU*ALN(1)*APH(1)=ALN(1)**2*APH(J)
 225 CONTINUE
                                                                           SL053400
     no 230 j=1,N
                                                                           SL053500
     no 230 J=1.N
                                                                           SL053600
     00 230 K=1,N
                                                                           SL053700
                                                                           SL053800
     IF ( I-J+K )805,800,805
 800 \text{ TERM1} = 0.
                                                                           SL053900
     TERM5 = 0.
                                                                           SL054000
                                                                           SL 054100
     TERM2 = (-1+(-1)**(J+K-1))/(ALN(J)*ALN(K)*-ALN(I))
     TERM3 = (-1+(-1)++(1+J-K))/(ALN(1)+ALN(J)-ALN(K))
                                                                           SL054200
     GO TO 830
                                                                           SL054300
 805 IF ( J+K-I )815,810,815
                                                                           SL054400
 81n TERM2 = 8.
                                                                           SL054500
     TERM1 = (-1+(-1)++(1-J+K))/(ALN(1)-ALN(J)+ALN(K))
                                                                           SL054600
                                                                           SL054700
     TERMS = (-1+(-1)**(I+J-K))/(ALN(I)*ALN(J)*ALN(K))
     TERM5 = (1,-(-1)**(J-I-K))/(ALN(J)-ALN(I)*ALN(K))
                                                                           SL054800
     GO TO 830
                                                                           SL054900
 815 IF ( I+J-K )825,820,825
                                                                           SL055000
 820 TERM3 = 0.
                                                                           SL055100
     TERM1 = (-1+(-1)**(I-J+K))/(ALN(I)-ALN(J)*ALN(K))
                                                                           SL055200
     TERM2 = (-1*(-1)**(J*K*1))/(ALN(J)*ALN(K)*ALN(I))
                                                                           SL055300
                                                                           SL055400
     TERM5 = (1,-(-1)**(J-)-K))/(ALN(J)*ALN(J)*ALN(K))
     GO TO 830
                                                                           SL055500
 825 \text{ TERM1} = (-1+(-1)++(1-J+K))/(ALN(1)+ALN(J)+ALN(K))
                                                                           SL055600
                                                                           SL055700
     TERM2 = (-1+(-1)**(J+K-1))/(ALN(J)*ALN(K)*ALN(I))
     TERM3 = (-1+(-1)**(I+J-K))/(ALN(I)+ALN(J)*ALN(K))
                                                                           SL055800
                                                                           SU055900
     TERM5 = (1,-(-1)**(J-[-K))/(ALN(J)-ALN(])-ALN(K))
 830 TERMA = (+1+(-1)++(1+J+K))/(ALN(1)+ALN(J)+ALN(K))
                                                                           SL056000
     DNNN(I,J,K) = -(.25/AONSQ) + (TERM1 + TERM2 + TERM3 + TERM4)
                                                                           SL056100
     ENNN(1,J,K) = (.25/AONSQ) + (TERM4+TERM5-TERM3-TERM2)
                                                                           SL056200
```

```
23n CONTINUE
                                                                           SL056300
     00 310 J=1,N
                                                                           SL056400
     DO 310 K=1,N
                                                                           SL056500
     TERM1 = (1.+(-1)++(J+K))/(ALN(J)+ALN(K))
                                                                           SL056600
     IF ( J-K )840,835,840
                                                                           SL056700
835 TERM2 = 0.
                                                                           SL056800
     GO TO 845
                                                                           SL056900
840 TERM2 = (1,-(-1)**(J-K))/(ALN(J)*ALN(K))
                                                                           SL057000
845 EONN(J,K) = (.25/AONSQ) *(2,*(TERM1+TERM2))
                                                                           SL057100
310 CONTINUE
                                                                           SL057200
     M = 10
                                                                           SL057300
     DO 235 I=1,N
                                                                           SL057400
     DO 235 J=1.N
                                                                           SL057500
     SUM = 0,
                                                                           SL057600
     DO 240 Km1,N
                                                                           SL057700
     SUM = SUM+ (ALN(J)+2*Cn1(K)*DNNN(K,I,J)*ALN(J)*Cn3(K)*ENNN(K,I,J)SL057800
    1 + M \star M \star CNS(K) \star DNNN(K, I, J))
                                                                           SL057900
240 CONTINUE
                                                                           SL058000
     TPNN(I,J) = (SUM-ALN(J)+B2PH+E0NN(I,J))+AMNK(J,JTER)
                                                                           SL058100
                                                                           SL058200
 235 CONTINUE
     IF (NOPT)4095,5000,4095
                                                                           SL058300
4095 PRINT 5005
                                                                           SL058400
5005 FORMAT (1H1,12x, *N1(I)+,15x, +N2(I)+,15x, +N3(I)+)
                                                                           SL058500
                                                                           SL058600
     PRINT 5010, (I, CN1(I), CN2(I), CN3(I), I=1, N)
5010 FORMAT (15,3E20,8)
                                                                           SL058700
                                                                           SL058800
     PRINT 5035
                                                                           SL058900
5035 FORMAT (+1 TP(I,J) +)
     CALL MPRINT (TPNN, N, N, N)
                                                                           SL059000
                                                                           SL059100
5000 SUM1 = SUM2 = 0.
     DO 245 1=1,N
                                                                           SL059200
     SUM3 = SUM4 = 0.
                                                                           SL059300
     DO 250 Ja1,N
                                                                           SL059400
                                                                           SL059500
     SUM3 = SUM3+AMNK(J, JTER)+BMMNNO(JTER, I, J)
                                                                           SL059600
     SUM4 = SUM4+AMNK(J, JTER)+BMMNNK(JTER, I, J)
                                                                           SL059700
 250 CONTINUE
     SUM1 = SUM1+AMNK(I, JTER)++2+AMNK(I, JTER)+SUM3
                                                                           SL059800
     SUM2 = SUM2+AMNK(I, JTER)++2+AMNK(I, JTER)+SUM4
                                                                           SL059900
                                                                           SL060000
 245 CONTINUE
                                                                           SL060100
     RMRAR = WKBSG+SUM1
                                                                           SL060200
     BKBAR = WKSQ+SUM2
                                                                           SL060300
     BTBAR = 0.
                                                                           SL060400
     DO 255 JE1, N
                                                                           SL060500
     DO 255 J=1.N
                                                                           SL060600
     BTBAR = BTBAR+TPNN(I, J) *AMNK(I, JTER)
                                                                           SL060700
 255 CONTINUE
                                                                           SL060800
     ABAR # (4.*BKBAR)/BMBAR
     GBAR = (2.*BTBAR)/BMBAR
                                                                           SL060900
                                                                           SL061000
     x0AQ = ABSF((1.-ABAR)/QBAR)
                                                                           SL061100
     XOSTR = XOAQ*((WRAD**2*A)/G)
                                                                            SL061200
     WSTR = W/(2.*WCPS(JTER))
     PRINT 4040, W. WKB, BKBAR, BTBAR, BMBAR, ABAR, QBAR, XOAQ, XOSTR, WSTR
                                                                           SL061300
4046 FORMAT (1H0,2F16.2,8E12.3)
                                                                            SL061400
                                                                            SL061600
     GO TO 1000
                                                                            SL061700
     END
                                                                            DK000100
     FUNCTION DKN(KD, ND)
                                                                            DK000200
     COMMON PI, H/COM4/ALN(10)
                                                                            DK000300
     IF (KD)10,15,10
                                                                            DK000400
  15 DKN # (1.0-COSF(ALN(ND)+H))/(H+ALN(ND))
                                                                            DK000500
     GO TO 20
  10 DKN # ((2.0*ALN(ND))/(H*(ALN(ND)**2*((KD*PI)/H)**2)))*(1.0*
                                                                            DK000600
    1 (-1) + + KD + COSF (ALN(ND) +H))
                                                                            DK000700
                                                                            DK000800
  20 RETURN
```

```
END
                                                                              DK000900
      FUNCTION DKNB(KDB, NPD)
                                                                              nk000100
      COMMON PI, H/COM3/AONSQ/COM5/ALNP(10)
                                                                              DK000200
      IF (KDR)10,15,10
                                                                              DK000300
  15 DKNB = (1,0-COSF(ALNP(NPD)+H))/(AONSO+ALNP(NPD))
                                                                              OK000400
      60 TO 20
                                                                              DK000500
  10 DKNB = (ALNP(NPD)/AONSQ)+((1.0-(-1)**KDB*CCSF(ALNP(NPD)*+))/
                                                                              DK000600
    1 (ALNP(NPD) * +2 * ((KDB * PI)/H) * *2))
                                                                              DK000700
  20 RETURN
                                                                              DK000800
      END
                                                                              DK000900
      FUNCTION RMK (MR, KR)
                                                                              RM000100
      COMMON PI, H/COM1/A, AO, CSCOW
                                                                              RM000200
      DIMENSION T(1000)
                                                                              RM000300
      XIK = SQRTF(ABSF(((KR*PI*AO)/(H*A))**2~CSCOW**2))
                                                                              RM000400
      IF (KR-(CSCOW+H)/PI)10,10,15
                                                                              RM000500
  10 CALL BES (MR, XIK, 0, RJM, T)
                                                                              RM000600
      CALL BES (MR+1, XIK, 0, RJM1, T)
                                                                              RM000700
      RMK = RJM/(+MR+RJM-XIK+RJM1)
                                                                              RM000800
      GO TO 20
                                                                              RM000900
   15 CALL BES (MR, XIK, 1, RIM, T)
                                                                              RM001000
      CALL BES (MR+1, XIK, 1, RIM1, T)
                                                                              PM001100
      RMK = RIM/(+MR*RIM+XIK*RIM1)
                                                                              RM001200
   2n RETURN
                                                                              RM001300
                                                                              RM001400
      FND
      FUNCTION EMKJ (ME, KE, JE)
                                                                              EM000100
      COMMON PI, H/COM1/A, AD, CSCOW/COM2/UMJ( 5)
                                                                              EM000200
      DIMENSION T(1000)
                                                                              EMD00300
      CALL BES (ME, UMJ(JE), 0, EJM, T)
                                                                              EM000400
      ALFSO = 0.5*(1,0*(ME**2/UMJ(JE)**2))*EJM**2
                                                                              FM000500
                                                                              EM000600
      XIK = SQRTF(ABSF(((KE+PI+A0)/(H+A))++2-CSCOW++2))
      IF (KE-(CSCOW+H)/PI)10,15,15
                                                                              EM000700
   In EMKJ = \#FJM/((X\uparrow K + 2 - UMJ(JE) + 2) + ALFSQ)
                                                                              FM000800
      05 OT 09
                                                                              FM000000
   15 EMKJ # *EJM/((X1K*+2+UMJ(JE)*+2)*ALFSQ)
                                                                              EM001000
   20 RETURN
                                                                              EM001100
                                                                              EM001200
      END
      SUBROUTINE BES(NO, X, KODE, RESULT, T)
                                                                              BES
                                                                                     1
03 UCSD RES
                  BESSEL FUNCTION
                                                                              F-63
      C3 UCSD BES
                                                                                  F 63
       DIMENSION T(1000)
                                                                              BES
      FORMAT(55H1NEGATIVE ORDER NOT ACCEPTED IN BESSEL FUNCTION ROUTINE)BES
                                                                                      3
                                                                                      4
      KLAM=1
                                                                                      5
      K0=N0+1
                                                                              BES
      IF(X) 6,1,6
                                                                              BES
                                                                                      6
      IF(NO) 4,2,3
                                                                              BES
                                                                                      7
2
                                                                                      8
      T(KO)=1.0
                                                                              BES
      RESULT=1.0
                                                                              BES
                                                                                    10
      RETURN
                                                                              BES
      IF(KO) 5,10,3
                                                                              BES
                                                                                    11
 3
                                                                                     12
      RESULT=0
                                                                              BES
      RETURN
                                                                              BES
                                                                                    13
      RESULT=9.999999999E200
                                                                              BES
                                                                                    14
 10
      RETURN
                                                                              8ES
                                                                                     15
  5
       PRINT 107
                                                                              BES
                                                                                    16
                                                                                    17
                                                                              BES
      STOP1
 6
      IF(NO) 5,7,7
                                                                              BES
                                                                                     18
                                                                              BES
                                                                                    19
      IF(KODE) 8,9,8
 7
                                                                                     20
 8
      KLAM=KLAM+1
                                                                              BES
      J0=2*IFIX(X)
                                                                                     21
                                                                              BES
 9
                                                                                     22
                                                                              BES
      MO=NO
                                                                                     23
      IF(MO=JO) 11,12,12
                                                                              BES
                                                                                     24
                                                                              BES
 11
      MO=JO
```

```
12
      M0 = M0 + 11
                                                                                 BES
                                                                                        25
      T(MO)=0,
                                                                                 RES
                                                                                        26
      | UR=MO-1
                                                                                        27
                                                                                 BES
      T(LUB)=1.0E+250
                                                                                 BES
                                                                                        28
      GO TO (23,51), KLAM
                                                                                 RES
                                                                                        29
23
      F=2+LUR
                                                                                 RES
                                                                                        30
      M0=M0-3
                                                                                 BES
                                                                                        31
      12=M0
                                                                                 BES
                                                                                        32
24
      F=F-2.
                                                                                        33
                                                                                 BES
      T(12+1)=F/X+T(12+2)+T(12+3)
                                                                                 BES
                                                                                        34
      IF(12)25,26,25
                                                                                 RES
                                                                                        35
25
      12=12-1
                                                                                 BES
                                                                                        36
      GO TO 24
                                                                                 BES
                                                                                        3.7
26
      SUM=T(1)
                                                                                 BES
                                                                                        38
      D040 J=3,M0,2
                                                                                 AFS.
                                                                                        39
 40
      SUM=SUM+2. +T(J)
                                                                                 BES
                                                                                        40
      F=1./SUM
                                                                                        41
                                                                                 BES
      po 50 J= 1,KO
                                                                                 BES
                                                                                        42
50
      T(J)=T(J)+F
                                                                                 BES
                                                                                        43
      RESULTET(KD)
                                                                                 RES
                                                                                        44
      RETURN
                                                                                 BES
                                                                                        45
51
      F=2+LUB+2
                                                                                 BES
                                                                                        46
      M0=M0=3
                                                                                 BES
                                                                                        47
      12=M0
                                                                                 BES
                                                                                        48
511
      T(12+1)=F/X+T(12+2)+T(12+3)
                                                                                 RES
                                                                                        49
      IF(12)52,53,52
                                                                                        50
                                                                                 BES
 52
      12=12-1
                                                                                 BES
                                                                                        51
      F=F-2.
                                                                                 BES
                                                                                        52
      GO TO 511
                                                                                        53
                                                                                 BES
 53
                                                                                        54
      SUMBT(1) .
                                                                                 BES
      DO 70 J#2,MO
                                                                                 RES
                                                                                        55
 70
      SUM#SUM+2. +T(J)
                                                                                 RES
                                                                                        56
                                                                                        57
      F=1./SUM+EXPF(X)
                                                                                 BES
                                                                                        58
      DO 80 J=1,KO
                                                                                 BES
 80
                                                                                        59
      T(J)=T(J)+F
                                                                                 RES
                                                                                        60
      RESULT=T(KO)
                                                                                 BES
      RETURN
                                                                                 BES
                                                                                        61
                                                                                        62
      FND
                                                                                 RES
                                                                                       100
      SURROUTINE MATINY ( A , IROW , ICOL , N , NDIM , SMLST )
                                                                                 MA
      DIMENSION A ( 1 ) , IROW ( 1 ) , ICOL ( 1 )
                                                                                       200
                                                                                 MA
                                                                                       300
C
      709-16065
                                                                                 MA
      709-16065 SUBROUTINE MATINV - MATRIX INVERSION ROUTINE
                                                                                 MA
                                                                                       400
                                                                                 MA
                                                                                       500
C
           A = ARRAY NAME OF MATRIX
                                                                                 MA
                                                                                       600
C
        IROW = DIMENSIONED AT N+1 OR GREATER
                                                                                 MA
                                                                                       700
        ICOL = DIMENSIONED AT N OR GREATER
                                                                                 MA
                                                                                       800
C
                                                                                 MA
                                                                                       900
          N . NUMBER OF EQUATIONS
      NDIM = VALUE OF I IN DIMENSION A(I,J) , I AND J MAY DIFFER SMLST = SMALLEST LEADING ELEMENT ALLOWED BEFORE CALLING THE
                                                                                      1000
C
                                                                                 MA
C
                                                                                 MA
                                                                                      1100
               SYSTEM SINGULAR , USUALLY = 1.0 E-04 OR 1.0 E-05
                                                                                 MA
C
                                                                                      1200
                                                                                      1300
C
                                                                                 MA
      NP1 = N + 1
                                                                                 MA
                                                                                      1400
      DO 100 I = 1, N
                                                                                 MΔ
                                                                                      1500
      ICOL(I) = I
                                                                                 MA
                                                                                      1600
  100 IROW ( I ) = I
                                                                                 MA
                                                                                      1700
      DO 240 ITER = 1, N
                                                                                      1800
                                                                                 MA
      MAXR = ITER
                                                                                      1900
                                                                                  MA
      MAXC = 1
                                                                                 MA
                                                                                      2000
      TEMP = ABSF ( A ( MAXR ) )
                                                                                      2100
                                                                                 MA
                                                                                      2200
      LIMITO . NP1 - ITER
                                                                                 MA
                                                                                  MA
                                                                                      2300
      DO 120 I = ITER, N
      no 120 J = 1, LIMITC
                                                                                  MA
                                                                                      2400
```

```
IJ = (J - 1) + NDIM + I
                                                                          MA
                                                                              2500
      IF ( TEMP - ( ARSF ( A ( IJ ) ) ) 110, 120, 120
                                                                         MA
                                                                              2600
C
                                                                          МΔ
                                                                              2700
 110 \text{ MAXR} = 1
                                                                          MA
                                                                              2800
      MAXC = J
                                                                          MA
                                                                              2910
      TEMP = ARSF ( A ( 1J ) )
                                                                              3000
                                                                          МΔ
                                                                          MA
                                                                              3100
 120 CONTINUE
      IF ( TEMP - SMLST ) 130, 130, 140
                                                                          MA
                                                                              3200
                                                                          МΔ
C
                                                                              3300
  130 IROW ( NP1 ) = ITER
                                                                          МΑ
                                                                              3400
      PRINT 1, ITER , SMLST
                                                                          MA
                                                                              3500
                                                                          MA
                                                                              3600
      RETURN
C
                                                                          MA
                                                                              3700
  140 IF ( MAXR - ITER ) 150, 170, 150
                                                                          MA
                                                                              3800
                                                                          МΔ
                                                                              3000
  150 no 160 J = 1, N
                                                                              4000
                                                                          MA
      MAXRJ = (J = 1) + NDIM + MAXR
                                                                          MA
                                                                              4100
      ITJ = (J - 1) + NDIM + ITER
                                                                              4200
                                                                          MA
      TEMP = A ( MAXRJ )
                                                                          МΑ
                                                                              4300
     'A ( MAXRJ ) # A ( ITJ )
                                                                          MA
                                                                              4400
                                                                          МД
                                                                              4500
  160 A ( ITJ ) = TEMP
                                                                          МΑ
                                                                              4600
      ITEMP = IROW ( MAXR )
                                                                          MΑ
                                                                              4700
      IROW ( MAXR ) = IROW ( ITER )
                                                                              4800
      TROW ( ITER ) = ITEMP
                                                                          MΑ
  170 IF ( MAXC - 1 ) 180, 200, 180
                                                                          MA
                                                                              4900
                                                                          MA
                                                                              5000
  180 DO 190 [ = 1, \u
                                                                          MA
                                                                              5100
                                                                          МΔ
                                                                              5200
      TMAXC = ( MAXC = 1 ) * NDIM + I
                                                                          MA
                                                                              5300
      TEMP = A (1)
                                                                          MA
                                                                              5400
      A (I) = A (IMAXC)
                                                                              5500
                                                                          MA
  190 A ( IMAXC ) = TEMP
                                                                          MA
                                                                              5600
      ITEMP = ICOL ( MAXC )
      JCOL ( MAXC ) = ICOL ( 1 )
                                                                          MA
                                                                              5700
                                                                          MA
                                                                              5800
      TCOL ( 1 ) = ITEMP
  200 TEMP = A ( ITER )
                                                                          MA
                                                                              5900
                                                                          MA
                                                                              6000
      ITEMP = ICOL ( 1 )
      no 210 J = 2, N
                                                                              6100
                                                                          MA
                                                                              6200
      ITUM1 = ( J + 2 ) * NDIM + ITER
                                                                          МΔ
      ITJ = ( J - 1 ) + NDIM + ITER
                                                                          MA
                                                                              6300
                                                                              6400
                                                                          MA
      A (ITJM1) = A (ITJ) / TEMP
  210 ICOL (J - 1) = ICOL (J)
                                                                          МΑ
                                                                              6500
      ITN = ( N - 1 ) + NDIM + ITER
                                                                          MA
                                                                              6600
      A (ITN) = 1 . D / TEMP
                                                                          МΑ
                                                                              6700
                                                                              6800
      ICOL ( N ) = ITEMP
                                                                          MΑ
                                                                              6900
      DO 240 I = 1, N
                                                                          MA
      IF ( I - ITER ) 220, 240, 220
                                                                          MA
                                                                              7000
                                                                          MA
                                                                              7100
                                                                               7200
  220 TEMP = A ( 1 )
                                                                          МΔ
      DO 230 J = 2, N
                                                                          MA
                                                                               7300
                                                                               7400
      IJM1 = (J - 2) + NDIM + I
                                                                          MA
                                                                          МΔ
                                                                              7500
       ij = (j - 1) + NDIM + I
       TTJM1 = (J + 2) + NDIM + ITER
                                                                          MΑ
                                                                              7600
      A ( IJM1 ) = A ( IJ ) - A ( ITJM1 ) + TEMP
                                                                          MA
                                                                               7700
                                                                          МΔ
                                                                              7800
  230 CONTINUE
                                                                          MΑ
                                                                               7900
       IN = (N - 1) + NDIM + I
       ITN = (N-1) + NDIM + ITER
                                                                               8000
                                                                          MA
                                                                          MA
                                                                               8100
       A (IN) = + (TEMP + A (ITN))
                                                                           MΑ
                                                                               8200
  240 CONTINUE
       DO 290 I = 1. N
                                                                          MA
                                                                               8300
                                                                          МД
                                                                               8400
       DO 250 J = I, N
       IF ( IROW ( J ) - I ) 250, 260, 250
                                                                           MA
                                                                               8500
C
                                                                           MA
                                                                               8600
```

```
250 CONTINUE
                                                                          МΔ
                                                                              8700
 260 IF (1 + J) 270, 290, 270
                                                                          МΑ
                                                                              8800
                                                                          MΑ
                                                                              8900
 270 DO 280 L = 1. N
                                                                          MA
                                                                              9000
     LI = (I - 1) + NDIM + L
                                                                          MΑ
                                                                              9100
     1J = ( J - 1 ) + NDIM + L
                                                                          MA
                                                                              9200
     TEMP = A ( LI )
                                                                          A M
                                                                              9300
      A (LI) = A (LJ)
                                                                          МΔ
                                                                              9400
 280 A ( LJ ) = TEMP
                                                                          MA
                                                                              9500
      TROW ( J ) = IROW ( I )
                                                                          MA
                                                                              9600
 290 CONTINUE
                                                                          Mά
                                                                              9700
     10 340 I = 1, M
                                                                          MA 9800
      DO 300 J = 1, N
                                                                          MA 9900
      IF ( ICOL(J) - I ) 300, 310, 300
                                                                          MA 10000
                                                                          MA 10100
 300 CONTINUE
                                                                          MA 10200
 310 IF ( I . J ) 320, 340, 320
                                                                          MA 10300
C
                                                                          MA 10400
 320 DO 330 L = 1, N
                                                                          MA 10500
      IL = (L - 1) + NDIM + I
                                                                          MA 10600
      JL = (L - 1) + NDIM + J
                                                                          MA 10700
      TEMP = A ( IL )
                                                                          MA 10800
      A(IL) = A(JL)
                                                                          MA 10000
 330 A (JL) = TEMP
                                                                          MA 11000
      ICOL(J) = ICOL(1)
                                                                          MA 11100
 340 CONTINUE
                                                                          MA 11200
      IROW (NP1) = n
                                                                          MA 11300
      RETURN
                                                                          MA 11400
C
                                                                          MA 11500
    1 FORMAT (7HOON THEI3,63HTH ITERATION ALL THE REMAINING TERMS WERE LMA 11600
     *ESS THAN OR EQUAL TO E11.4.18H IN ABSOLUTE VALUE)
                                                                          MA 11700
                                                                          MA 11800
      SURROUTINE MPRINT ( A , M , N , MD )
                                                                              100
                                                                          MP
      MATRIX PRINT SUBROUTINE
C
                                                                          MP
                                                                               200
C
      THE CALL FOR THIS SUBROUTINE IS AS FOLLOWS,
                                                                          MP
                                                                               300
C
      CALL MPRINT (A,M,N,MD)
                                                                          MP
                                                                               400
        WHERE A IS THE MATRIX TO BE PRINTED
C
                                                                          MP
                                                                               500
C
              M IS THE NUMBER OF ROWS
                                                                          MP
                                                                               600
Ċ
                                                                          MP
                                                                               700
             N IS THE NUMBER OF COLUMNS
C
                                                                          MP
             MD IS DIMENSIONED NO. OF ROWS OF MATRIX A
                                                                               800
      DIMENSION A (1), JT (6), C (6)
                                                                          MP
                                                                               900
                                                                          MP
                                                                              1000
      EQUIVALENCE ( JT , C )
                                                                          MP
      N1 = N
                                                                              1100
                                                                          MP
      N2 = 6
                                                                              1200
      N3 = 6
                                                                          MP
                                                                              1300
      N4 = 1
                                                                          MP
                                                                              1400
 100 IF ( N3 - N1 ) 120, 120, 110
                                                                          MP
                                                                              1500
Ç
                                                                          MP
                                                                              1600
  110 N2 = N1 - N3 + 6
                                                                          MP
                                                                              1700
      N3 = N1
                                                                          MP
                                                                              1800
  120 K = 0
                                                                          MP
                                                                              1900
      DO 130 I = N4, N3
                                                                          MP
                                                                              2000
                                                                          MP
                                                                              2100
      K = K + 1
  130 JT ( K ) = I
                                                                          MP
                                                                              2200
      PRINT 1, ( wT ( I ) , I = 1 , N2 )
DO 150 I = 1, M
                                                                          MP
                                                                              2300
                                                                          MP
                                                                              2400
                                                                              2500
      K = 0
                                                                          MP
                                                                          MP
      L = MD + (N4 - 1) + I
                                                                              2600
      n0 = 140 J = N4, N3
                                                                          MP
                                                                              2700
                                                                          MP
                                                                              2800
      K = K + 1
      C ( K ) = A ( L )
                                                                          MP
                                                                              2900
  140 L = L + MD
                                                                              3000
                                                                          MP
```

```
150 PRINT 2, 1, (C(K), K=1, N2)
                                                                           MP
                                                                               3100
      IF ( N3 - N1 ) 160, 170, 170
                                                                           MP
                                                                               3200
C
                                                                           MP
                                                                               3300
  160 N3 = N3 + 6
                                                                           MP
                                                                               3400
      N4 = N4 + 6
                                                                           MP
                                                                               3500
      60 TO 100
                                                                           MP
                                                                               3600
C
                                                                           MP
                                                                               3700
  170 RETURN
                                                                           MP
                                                                               3800
                                                                           MP
                                                                               3000
                                           114 ) /
               (1H , 4X, 6( 6X, 7HCOLUMN
                                                                           MP
                                                                               4000
    1 FORMAT
                                                             )
    2 FORMAT
               (1H 114, X, (6E 17.8)
                                                                           MP
                                                                               4100
                                                                              4200
      FND
                                                                           MP
                                                                           MTRS0148
      SURROUTINE NPNRMX (A, B, N, FL, INDEX, MD, NX )
      CALL NPNRMX, (A, B, N, FL, INDEX, MD, NX, NP )
                                                                           MTRS0135
      A=VECTOR TO BE NORMALIZED B=NORMALIZED VECTOR(MAY=A)
                                                                           MTRS0136
Ċ
                                  FL=NORMALIZING NUMBER
                                                                           MTRS0137
      N=SI7F
C
      INDEX=+ ON ENTRY, NORMALIZE ON NUMBER WHOSE INDEX IS INDEX
                                                                           MTRS0138
C
         ED ON ENTRY, NORMALIZE ON LARGEST S.H. AND SET
                                                                           MTRS0139
C
                                                                           MTRS0140
                             INDEX#TO ITS INDEX.
         == ON ENTRY, NORMALIZE ON FL.
                                                                           MTRS0141
C
      MD=SINGLE PRECISION DIMENSIONED NUMBER OF ROWS OF A AND B
                                                                           MTRS0142
C
C
      NX=1, VECTOR REAL
                                                                           MTRS0143
C
                                                                           MTRS0144
        =2, VECTOR COMPLEX
      MP=1, SINGLE PRECISION
                                                                           MTRS 0145
                                                                           MTRS0150
      DIMENSION A(1), B(1), FL(1), D(1), C(1)
                                                                           MTRS0152
      N1 = 2
      N2=N
                                                                           MTRS0153
      N4=MD
                                                                           MTRS0154
      IF ( INDEX) 32, 7,38
                                                                           MTRS0155
    7 GOTO (11,8),NX
                                                                           MTRS0156
                                                                           MTRS0157
    A FL = (A(1) * *2 * A(N4 + 1) * *2)
                                                                           MTRS0158
      INDEX=1
      DO 10 KEN1.N2
                                                                           MTRS0259
        I=K+N4
                                                                           MTRS0160
                                                                           MTRS0161
        D= (A(K)++2+A(I)++2)
                                                                           MTRS0162
        IF (FL-D) 9,9,10
        FL =D
                                                                           MTRS0163
                                                                           MTRS0164
         INDEX#K
   1 0
                                                                           MTRS0165
        CONTINUE
    6 FL=A(INDEX)
                                                                           MTRS0166
                                                                           MTRS0167
      GOTO 18
                                                                           MTRS0169
   11 FLEABSF(A(1))
                                                                           MTRS0170
      INDEX=1
                                                                           MTRS0171
      no 13 k=N1,N2
                                                                            MTRS0172
        D=ABSF(A(K))
        IF (FL-D) 12,12,13
                                                                            MTRS0173
                                                                           MTRS0174
   12
        FLED
                                                                            MTRS0175
        INDEXEK
                                                                            MTRS0176
       CONTINUE
   13
   14 FLEA(INDEX)
                                                                            MTRS0178
                                                                            MTRS0180
   16 DO 17 181,N
                                                                            MTRS0181
        B(1)=A(1)/FL
   17
      GOTO 30
                                                                            MTRS0182
                                                                            MTRS0184
   18 I=INDEX+MD
                                                                            MTRS0185
      FL(2)=A(1)
    10 N=FL(1)++2+FL(2)++2
                                                                            MTRS0186
                                                                            MTRS0187
      DO 20 1=1,N
                                                                            MTRS0188
        K=1+MD
         C=A(1)+FL(2)-A(K)+FL(1)
                                                                            MTRS0189
                                                                            MTRS0190
         B(1)=(A(1)*FL(1)+A(K)*FL(2))/D
                                                                            MTRS0191
        B(K) = eC/D
                                                                            MTRS0211
   30 RETURN
```

```
32 GOTO (34,36), NX
                                                                            MTRS0213
   34 GOTO 16
                                                                            MTRS0214
   36 GOTO 19
                                                                            MTRS0215
   38 GOTO 40
                                                                            MTRS0217
      GOTO (14,6) ,NX
                                                                            MTRS0219
                                                                            MTRS0220
      SUBROUTINE DPMLTX (A,NA,B,NB,C,M,N,K,MA,MB,MC)
                                                                            MTRS0053
C
      SUBROUTINE
                                                                            MTRS0035
C
      CALLING SEQUENCE....
                                                                            MTRS0037
C
      CALL DPMLTX (A, NA, B, NB, C, M, N, K, MA, MB, MC)
                                                                            MTRS0038
n
                                   MA . DIMENSIONED NUMBER OF ROWS A
          A = PREMULTIPLIER
                                                                            MTRS0040
          B # POSTMULTIPLIER
C
                                    MB . DIMENSIONED NUMBER OF ROWS B
                                                                            MTRS0041
C
          C = PRODUCT
                                    MC = DIMENSIONED NUMBER OF ROWS C
                                                                            MTRS0042
Ċ
          M = NO. ROWS IN A
                               = NO. ROWS IN C
                                                                            MTRS0043
C
          N = NO. COLUMNS IN A = NO. ROWS IN B
                                                                            MTRS0044
C
          K = NO. COLUMNS IN B = NO. COLUMNS IN C
                                                                            MTRS0045
          NA AND NB = 1 IF A OR B. RESPECTIVELY, ARE REAL.
C
                                                                            MTR50046
                    = 2 IF A OR B, RESPECTIVELY, ARE COMPLEX.
¢
                                                                            MTRS0047
          MA, MR, MC ARE SINGLE PRECISION DIMENSIONS, (1/2 OF ACTUAL CORE MTRS0049
C
           RESERVED FOR REAL DOUBLE PRECISION MATRICES, AND 1/4 OF
                                                                            MTRS0050
C
           ACTUAL CORE RESERVED FOR COMPLEX DOUBLE PRECISON MATRICES)
                                                                            MTRS0051
      DIMENSION A(1), B(1), C(1)
                                                                            MTRS0055
      IA=MC+K
                                                                            MTRS0057
      IB=MA+N+NA
                                                                            MTRS0058
      TC=1
                                                                            MTRS0059
      ID=MA*NA
                                                                            MTRS0060
      THEME
                                                                            MTRS0061
      TJ=MC
                                                                            MTRS0062
      IK=M
                                                                            MTRS0063
      IL=1
                                                                            MTRS0064
      I M = 0
                                                                            MTRSOOAS
      GOTO
            (6,7),NA
                                                                            MTRS0066
    6 G0T0
            (11,10),NB
                                                                            MTRS0067
           (9,8),NB
                                                                            MTRS0068
      GOTO
                                                                            MTRS0069
            10=8
    8
        GOTO
              10
                                                                            MTRS0070
    9 IH=2*IH
                                                                            MTRS0071
      1C=3
                                                                            MTRS0072
   10 1A=2+1A
                                                                            MTRS0073
                                                                            MTRS074
      1J=2*1J
   11 DO 30 I=1, IK, IL
                                                                            MTRS0075
      INC=IM
                                                                            MTRS0076
        DO 16
                J#I, IA, IH
                                                                            MTRS0077
      IN=INC
                                                                            MTRS0078
   12
        C(J)=0.
                                                                            MTRS00A1
        DO 13 L=1.18.1D
                                                                            MTRS0082
                                                                            MTRS0083
           IN=IN+1
                                                                            MTRS0084
   13
           C(J)=C(J)+A(L)+B(IN)
           INC# INC+MB
                                                                            MTRS0091
   16
                                                                            MTRS0003
      GOTO (30,18,24),IC
                                                                            MTRS0094
   18 IE=I+MA
      INC#IM
                                                                            MTRS0095
                                                                            MTRS0096
      DO 23
              J=I, IA, IJ
      IN=INC
                                                                            MTRS0097
        IF=J+MC
                                                                            MTRS0098
   19
        DO 20 L=IE,18,ID
                                                                            MTRS0100
           IN=IN+1
                                                                            MTRS0101
                                                                            MTRS0102
           IG=IN+MB
                                                                            MTRS0103
           C(IF)=C(IF)+A(L)+B(IN)
   20
                                                                            MTRS0104
           C(J)=C(J)-A(L)+B(IG)
   23
         INC=INC+2+MB
                                                                            MTRS0112
         GOTO 30
                                                                            MTRS0113
```

```
24
        1E=1+40
                                                                               MTRS0114
        IF=I+MA
                                                                               MTRS0115
      INC=IM
                                                                               MTRS0116
        00 29 J=1E, 14, 1J
                                                                               MTRS0117
      INSINC
                                                                               MTRS0118
   25
        C(J)=0.
                                                                               MTRS0120
        DO 26 L=IF.18.1D
                                                                               MTRS0121
           IN= | N+1
                                                                               MTRS0122
   26
                                                                               MTRS0123
           C(J)=C(J)+A(L)+B(IN)
                                                                               MTRS0129
   29
        INC=INC+MB
   30
        CONTINUE
                                                                               MTRS0131
                                                                               MTRS0132
      RETURN
                                                                               MTRS0133
      FAD
   SUBROUTINE SWEEPX (HTRUE, U,H, US.FL, MODE, N, MD, NC, INDEX, EP) MTRS0233 COMPUTES TRUE MODE AND SWEEPS IT FROM THE MATRIX. (REAL OR COMPLEX) MTRS0223
   HTRUE = TRUE MODAL COLUMNS, AS COMPUTED. U. = EYNAMIC MATRIX.
                                                                               MTRS0225
       H = SERIES OF MODIFIED MODAL COLUMNS. FL = COLUMN OF EIGENVALUES.
                                                                               MTRS0226
      US = SERIES OF MODIFIED MODAL ROWS OF U.
                                                                               MTRS0227
C
C
     MODE = MODE NOW REING COMPUTED.
                                             N = SIZE
                                                                               MTRS0228
      MD = DIMENSIONED NUMBER OF ROWS OF U, US, H, HTRUE
                                                                               MTRS0229
                                                                               MTRS0230
      MX = 1 IF PORBLEM IS REAL.
C
                                                                               MTRS0231
          = 2 IF PROBLEM IS COMPLEX.
C
      DIMENSION H(1), US(1), U(1), HTRUF(1), FL(1), G(4)
                                                                               MTRS0235
                                                                               MTRS0237
      M=MODE-1
                                                                               MTRS0238
      K1=M+NC+MD
                                                                               MTRS0240
      no 6 J=1,NC
        K=K1+(J-1) +MD
                                                                               MTRS0241
                                                                               MTRS0242
        DO 6 L=1,N
                                                                               MTRS0243
           K=K+1
                                                                               MTRS0244
           HTRUE(K)=H(K)
                                                                               MTRS0246
           ( M ) 31,31,8
       DO 25 J=1,M
                                                                               MTRS0247
          L1=NC+MD+(MODE-I) -NC+MD
                                                                               MTRS0248
                                                                               MTRS0249
      GOTO . ( 9,11),NC
                                                                               MTRS0250
       G=0.
      pc 10
              J=1,N
                                                                               MTRS0251
        L=L1+J
                                                                               MTRS0252
                                                                                MTRS0253
         K=K1+J
        G=G+US(L)+FTRUE(K)
                                                                                MTRS0254
   11
      GOTO 13
                                                                               MTRS0255
                                                                               MTRS0256
   11
                 G(1) = 0.
                G(2) = 0,
                                                                                MTRS0257
      PO 12 J1=1.N
                                                                               MTRS0258
                                                                               MTRS0259
         L=L1+J1
         K=K1+J1
                                                                                MTRS0260
                                                                                MTRS0261
         L2=L+MD
                                                                                MTRS0262
                                                                               MTRS0263
         G(1)=G(1)+US(L)*HTRUE(K)-US(L2)*HTRUE(K2)
        G(2)=G(2)+US(L)+HTRUE(K2)+US(L2)+HTRUE(K)
                                                                                MTRS0264
   13 K=MODE-1
                                                                                MTRS0265
                                                                                MTRS0266
      GOTO (14,19),NC
   14 IF (ABSF(FL(K)/FL(MODE)-1.) - EP)
                                                                                MTRS0267
                                              15, 15, 16
                                                                                MTRS0268
   15 G=1.
      GOTO
             17
                                                                                MTRS0269
                                                                                MTRS0270
   16 G=(FL(K)-FL(MODE)) / G
                                                                                MTRS0271
   17 DO 18 J=1,N
                                                                                MTRS0272
                                                                                MTRS0273
           L=L1+J
           HTRUE(K)=H(\underline{U})=G(1)+HTRUE(K)
                                                                                MTRS0274
       GDTO 25
                                                                                MTRS0275
                                                                                MTRS027.6
   19 K=2*K
                                                                                MTRS0277
       J=5*MODE
```

```
IF ( ABSF((FL(K=1)*FL(J-1)*FL(K)*FL(J))/(FL(J-1)**2*FL(J)**2)-1.) MTRS0278
  4
                -EP)
                            20,20,22
                                                                         MTRS0279
20 IF ( ARSF((FL(K)*FL(J-1)-FL(K=1)*FL(J)) / (FL(J+1)**2+FL(J)**2))
                                                                          MTRS028
           -EP)
                      21,21,22
                                                                         MTRS0281
 1
21 G(1)=1.
                                                                         MTRS0282
   G(2)=0.
                                                                         MTRS0283
   GOTO 23
                                                                         MTRS0284
22 G(3)=G(1)**2*G(2)**2
                                                                         MTRS0285
     G(4)=(FL(K)-FL(J))*G(1)-(FL(K-1)-FL(J-1))*G(2)
                                                                         MTRS0286
     G(1)=((FL(K-1)-FL(J-1))*G(1)*(FL(K)-FL(J))*G(2)) / G(3)
                                                                         MTRS0287
                                                                         MTRS0288
     G(2) = G(4) / G(3)
23
     DO 24 J1=1,N
                                                                         MTRS0290
       K=K1+J1
                                                                         MTRS0291
                                                                         MTRS0292
       K2=K+
                  MD
       L=11+J1
                                                                         MTRS0293
       L2=L+MD
                                                                         MTRS0294
       G(3)=HTRUE(K)
                                                                         MTRS0295
                          G(2)+HTRUE(K2)-G(1)+HTRUE(K)
                                                                         MTRS0296
       HTRUE(K)= H(L)+
       HTRUE(K2) = H(L2) - G(1) * HTRUE(K2) - G(2) * G(3)
                                                                         MTRS0294
                                                                         MTRS0298
24
     CONTINUE
25 CONTINUE
                                                                         MTRS0299
                                                                         MTRS0301
   1 = 0
   CALL NPNRMX (HTRUE(K1+1), HTRUE(K1+1), N, C, I, MD, NC )
                                                                         MTRS0302
31 GOTO (26,32),NC.
                                                                         MTRS0304
26 DO 29 J=1,A
                                                                         MTRS0305
     L1=(J=1) +MD
                                                                         MTRS0306
     L2=K1+J
                                                                         MTRS0307
                                                                         MTRS0308
   DO 29 I=1.N
                                                                         MTRS0309
       L=L1+1
                                                                         MTRS0310
     1F
         (I-INDEX) 28,27,28
                                                                         MTRS0311
     U(L)=0.
27
                                                                         MTRS0312
     GOTO 29
28
     K=K1+1
                                                                         MTRS0313
     U(L)=U(L)+H(K)+US(L2)
                                                                         MTRS0314
                                                                         MTRS0315
29
     CONTINUE
30 RETURN
                                                                         MTRS0317
32 DO 35 I=1.N
                                                                         MTRS0319
                                                                         MTRS0320
     L1=MD+NC+(I-1)
                                                                         MTRS0321
     L2=K1+T
                                                                         MTRS0322
        J=L2+MD
                                                                         MTRS0323
     0.035 \text{ J1=1,N}
                                                                         MTRS0324
       L=L1+J1
                                                                         MTRS0325
        K3=L+M0
                                                                         MTRS0326
        IF (J1-INDEX)
                        34,33,34
                                                                         MTRS0327
33
        U(L)=0.
                                                                         MTRS0328
       U(K3)=0.
                                                                         MTRS0329
   GOTO 35
                                                                         MTRS0330
34
        KEK1+J1
                                                                         MTRS0331
        K2=K+MD
                                                                         MTRS0332
        U(|)=U(L)-H(K)+US(L2)+H(K2)+US(J)
        U(K3)=U(K3)-H(K2)+US(L2)-H(K)+US(J)
                                                                         MTRS0333
                                                                         MTRS0334
35
        CONTINUE
                                                                         MTRS0336
    GOTO 30
                                                                         MTRS0337
   END
                          (A, NTAPE, N. GUESS, NGUESS, NMODE, VECTOR,
                                                                         MTRS0375
    SUBROUTINE MITERS
                                                                          MTRS0376
                           EIGVAL, NITER, NITESP, EPSP,
  1
                               US, H, MAXR, NC, AITKEN, NAKSR, UTRSV)
                                                                          MTRS0377
CALLING SEQUENCE....
                                                                         MTRS0341
    A = MATRIX, DIMENSIONED (MAXR X 2*N) - REAL
                                                                          MTRS0343
                                                                          MTRS0344
                             (MAXR X 2+N) - COMPLEX
 N = ORDER OF MATRIX
                                                                          MTRS0346
 GUESS=1ST, GUESS VECTOR, DIMENSIONED (MAXR X 1) - REAL
                                                                          MTRS0347
```

C

C

C

C

C

```
MTRS0348
                                           (MAXR X 2) - COMPLEX
    NGUESS=0, ROUTINE SUPPLIES GUESS VECTOR
                                                                           MTRS0379
Ċ
                                                                           MTRS0350
          m+1, GUESS CONTAINS GUESS VECTOR
C
    NMODE=NUMBER OF EIGEN SOLUTIONS REQUESTED
                                                                           MTRS0351
C
                                                                           MTRS0352
    VECTOR#FIGENVECTORS, DIMENSIONED (MAXR X NMODE) - REAL
C
                                      (MAXR X 2+NMODE) - COMPLEX
                                                                           MTRS0353
                                       (NMODE X 1) - REAL
                                                                           MTRS0354
C
    FIGVALSEIGENVALUES
                                                                           MTRS0355
                                       (NMODF+2 X 1) - COMPLEX
C
                                                                           MTRS0356
    NITER=NUMBER OF ITERATIONS PER MODE
C
    NITRSP = MAXIMUM NUMBER OF SINGLE PREC. ITERATIONS
                                                                           MTRS0357
C
                                                                           MTRS0358
    EPSP = CONVERGENCE CRITERIA FOR SINGLE ROOTS
C
    US=CHECK EIGENVECTORS, DIMENSIONED (MAXR X NMCDE) - REAL
                                                                           MTRS0360
C
                                        (MAXR X 2+NMCDE) - COMPLEX
                                                                           MTRS0361
C
                                           (MAXR X (NMODE+4) - REAL
                                                                           MTRS0362
    HEWORKING AREA OF CORE DIMENSIONED
C
                                           (MAXR X 2+(NMODE+4) - COMPLEX
                                                                           MTRS0363
C
                  WILL CONTAIN CHECK EIGENVALUES, IF REQUESTED
                                                                           MTRS0364
C
                                                                           MTRS0367
    MAXR & DIMENSIONED NUMBER OF ROWS
Ċ
                                                                           MTRS0368
    NC = 1. PROBLEM REAL
                                                                           MTRS83A9
       = 2, PROBLEM COMPLEX
                                                                           MTRS0370
    AITKEN = AITKEN CONVERGENCE CRITERIA
                                                                           MTRS0371
    NAKSR . NUMBER OF TIMES AITKEN APPLIED
      DIMENSION A(1), GUESS(1), VECTOR(1), EIGVAL(1), NITER(1), US(1),
                                                                           MTRS03a0
                                                                           MTRS0381
                 H(1), NAKSR(1), UTRSV(1)
    DEFINE PROGRAM CONSTANTS AND ZEROS.
                                                                           MTRS0408
C
                                                                           MTRS0409
    8 MODE=0
                                                                           MTRS0411
      AT=AITKEN++2
                                                                           MTRS0412
      IF ( EPSP )
                      12,9,12
                                                                           MTRS0413
    9 FPSP = .1E-08
                                                                           MTRS0417
   12 IF ( NGUESS )
                       15,13,15
                                                                           MTRS0419
          J1=MAXR*(NC-1)
                                                                           MTRS0420
          DO 14 I=1,N
                                                                            MTRS0421
            K=J1+I
                                                                           MTRS0422
            GUESS(K)=0.
                                                                            MTRS0423
            GUESS(I)=1.
   14
                                                                            MTRS0425
   15 MODE = MODE+1
                                                                            MTRS0426
       NAKSR(MODE)=0
                                                                            MTRS0428
       160=1
                                                                            MTRS0429
       NITER(MODE)=0
                                                                            MTRS0430
       K1=NC+MAXR+(MODE=1)
                                                                            MTRS0431
       K2=K1+1
                                                                            MTRS0432
       K3=NC*(MODE-1)+1
                                                                            MTRS0433
       K4= NC+MAXR
                                                                            MTRS0434
       K5= K4+NMODE
                                                                            MTRS0435
       K6=K5+K4
                                                                            MTRS0437
   MOVE FIRST GUESS INTO POSITION
                                                                            MTRS0438
       DO 16 J=1,NC
                                                                            MTRS0439
          J1=MAXR+(J-1)
                                                                            MTRS0440
          DO 16 I=1.N
                                                                            MTRS0441
            K=K1+J1+1
                                                                            MTRS0442
            L = J1 + I
                                                                            MTRS0443
            H(K)=GUESS(L)
    16
                                                                            MTRS0445
    17 NAK=0
                                                                            MTRS0446
    1a NITER(MODE)=NITER(MODE)+1
                                                                            MTRS0447
       NAK=NAK+1
                                                                            MTRS0448
       INDEX=0
                                                                          ) MTRS0449
       CALL DPMLTX (A,NC, H(K2),NC, VECTOR(K2), N,N,1, MAXR,MAXR,MAXR
       CALL NPNRMX (VECTOR(KZ), H(KZ), N, EIGVAL(K3), INDEX, MAXR, NC
                                                                         ) MTRS0450
                                                                            MTRS0452
   TEST FOR SINGLE ROOT CONVERGENCE
                                                                            MTRS0453
       DO 23 J=1.NC
                                                                            MTRS0454
          J1=(J-1) + MAXR
                                                                            MTRS0455
          K=K1+J1
                                                                            MTRS0456
       GOTO (24,19,21),NAK
```

```
10
       L=K5+J1
                                                                         MTRS0457
        DO 20 I=1,N
                                                                         MTRS0458
           L=[.+1
                                                                         MTRS0459
           K=K+1
                                                                         MTRS0460
                                             20,20,24
           IF ( ABSF(H(L)-H(K)) - EPSP)
                                                                         MTRS0461
  20
           CONTINUE
                                                                         MTRS0462
         GOTO 100
                                                                         MTRS0463
         DO 22 1=1,N
  21
                                                                         MTRS0464
           K=K+1
                                                                         MTRS 0465
           IF ( ABSF(US(K)-H(K)) + EPSP ) 22,22,24
                                                                         MTRS0466
   22
         CONTINUE
                                                                         MTRS0467
   23 CONTINUE
                                                                         MTRS0466
  100 IF ACCUMULATOR OVERFLOW
                                              108,102
                                                                         MTRS0469
  102 GOTO 56
                                                                         MTRS0470
C
      NO CONVERGENCE, SO TEST MAXIUUM NUMBER OF ITERATIONS.
                                                                         MTRS0474
   24 IF
         (NITER(MODE)=NITESP)
                                       25,46,46
                                                                         MTRS0475
      NOT YET EXCEEDED. SO TRY FOR AITKENS TIME.
C
                                                                         MTRS0477
   25 GOTO (40,44,31), NAK
                                                                         MTRS047A
      TEST FOR AITKENS CONVERGENCE.
                                                                         MTRS0481
   31 GOTO
             ( 26,36),NC
                                                                         MTRS0482
   26 DO 28 I=1.N
                                                                         MTRS0484
         JEK5+1
                                                                         MTRS0485
         K=K1+1
                                                                         MTRS0486
      IF
          ( US(K)=H(J) )
                            27,261,27
                                                                         MTRS0487
  261 IF
          ( H(K)-US(K) )
                                                                         MTRS0488
                            32,28,32
         IF ( (ABSF( (H(K)-US(K))/ (US(K)-H(J)) )) -AITKEN) 28,28,32MTRS0489
   27
   28 CONTINUE
                                                                         MTRS0490
C
     ALL VECTOR ELEMENTS DK, SO APPLY AITKENS SPEECER-UPPER.
                                                                         MTRS0492
      no 30 ja1, N
                                                                          MTRS0493
         J=K5+1
                                                                          MTRS0494
         K=K1+1
                                                                          MTRS0495
      Q=(H(K) #2, +US(K)+H(J))
                                                                          MTRS0496
      IF (G) 29,30,29
                                                                          MTRS0497
   29 H(K)=H(J)+ ( (US(K)+H(J))++2 / Q)
                                                                          MTRS0498
   30 CONTINUE
                                                                          MTRS0499
      NAKSR(MODE)=NAKSR(MODE) + 1
                                                                          MTRS0500
                                                                          MTRS0501
      GOTO 17
   CONVERGENCE TEST NOT MET, RESTORE AND TRY AGAIN.
                                                                          MTRS0503
                                                                          MTRS0504
   32 DO 33 L=1,NC
                                                                          MTRS0505
         J1=(L-1) + MAXR
         DO 33 I=1.N
                                                                          MTRS0506
         J=K1+J1+1
                                                                          MTRS0507
                                                                          MTRS0508
         K=K5+J1+1
                                                                          MTRS0509
         H(K)=US(J)
                                                                          MTRS0510
   33
         US(J)=H(J)
      NAK=2
                                                                          MTRS0511
                                                                          MTRS0512
      GOTO 18
C IF PROBLEM COMPLEX, REPEAT ALL ABOVE FOR COMPLEX ARITHMETIC.
                                                                          MTRS0514
   36 PO 38 I=1.N
                                                                          MTRS0515
                                                                          MTRS0516
         J=K5+1
         K=K1+I
                                                                          MTRS0517
         JJ=J+MAXR
                                                                          MTRS0518
                                                                          MTRS0519
         KK=K+MAXR
         0 = (US(K)-H(J))**2 + (US(KK)-H(JJ))**2
                                                                          MTRS0520
      IF ( 0 )
                                                                          MTRS0521
                     37,361,37
  361 IF ( (H(K)-US(K))**2 + (H(KK) - US(KK))**2 ) 32,38,32
                                                                          MTRS0522
        IF ( ((H(K)-US(K))++2 + (H(KK) - US(KK))++2) / Q-AT) 38,38,32
                                                                         MTRS0523
   37
                                                                          MTRS0525
       CONTINUE
      DO 39 1=1,N
                                                                          MTRS0527
                                                                          MTRS0528
       J=K5+1
                                                                          MTRS0529
      JJ=J+MAXR
                                                                          MTRS0530
      K=K1+I
```

```
KK=K+MAXR
                                                                       * MTRS0531
   0 = (H(K)-2.*US(K)+H(J))**2 * (H(KK)-2.*US(KK)+H(JJ))**2
                                                                          MTRS0532
    IF ( 0 ) 35,39,35
                                                                          MTRS0533
35 X=H(K)
                                                                          MTRS0534
   H(K) = H(J) = (((US(K) - H(J)) + + 2 - (US(KK) - H(JJ)) + + 2) + (H(K) - 2 + 4)
                                                                          MTRS0536
       US(K)+H(J))+(2,+(US(K)-H(J))+(US(KK)+H(JJ))+
                                                                          MTRS0537
   2(H(KK)-2. +US(KK)+H(JJ) ))) / Q)
                                                                          MTRS0538
   H(KK)=H(JJ)-(((2,*(US(K)-H(J)))*(US(KK)-H(JJ)))*(X-2,*
                                                                          MTRS0539
   1US(K)+H(J))-((US(K)-H(J))++2-(US(KK)-H(JJ))++2)
                                                                          MTRS0540
   2*(H(KK)+2,*US(KK)+H(JJ))) / 0 )
                                                                          MTRS0541
39 CONTINUE
                                                                          MTRS0542
    NAKSR(MODE) = NAKSR(MODE) + 1
                                                                          MTRS0543
    GOTO 17
                                                                          MTRS0544
40 DO 41 Jal, NC
                                                                          MTRS0547
    J1=MAXR+(J-1)
                                                                          MTRS0548
    DO 41 I=1.N
                                                                          MTRS0549
    K=K1+J1+T
                                                                          MTRS0550
   L=K5+J1+1
                                                                          MTRS0551
41 H(L)=H(K)
                                                                          MTRS0552
    GOTO(18,56), IGO
                                                                          MTRS0553
44 DO 45 Jal,NC
                                                                          MTRS0555
    J1=MAXR+(J-1)
                                                                          MTRS0556
    DO 45 I=1,N
                                                                          MTRS0557
    K=K1+J1+I
                                                                          MTRS0558
45 US(K)=H(K)
                                                                          MTRS0559
    GOTO 18
                                                                          MTRS0560
 MODE DID NOT CONVERGE IN NORMAL ITERATION
                                                                          MTRS 0562
46 MODE = MODE-1
                                                                          MTRS0564
    PRINT 94, MODE
                                                                          MTRS0565
    GO TO 80
                                                                          MTRS0566
56 DO 58 J=1.NC
                                                                          MTRS0615
    J1=MAXR+(J-1)+INDEX
                                                                          MTRS0616
    DO 58 1=1,N
                                                                          MTRS0617
    K=K1+MAXR+(J+1)+I
                                                                          MTRS0618
    US(K)=4(J1)
                                                                          MTRS0619
5g J1=J1+K4
                                                                          MTRS0620
    CALL SWEEPX (VECTOR, A, H, US, EIGVAL, MODE, N, MAXR, NC, INDEX, EPSP)
                                                                          MTRS0621
59 J1=(NC+1)+MAXR+INDEX
                                                                          MTRS0636
    GUESS(J1)=0.
                                                                          MTRS0637
    GUESS(INDEX)=0.
                                                                          MTRS0638
62 IF (NMODE-MODE)
                         70,70,15
                                                                          MTRS0641
10a PRINT 131
                                                                          MTRS0646
    MODE = MODE-1
                                                                          MTRS0647
    PRINT 132, MODE
                                                                          MTRS0648
    NMODE = MODE
                                                                          MTRS0649
    GO TO 70
                                                                          MTRS0650
70 IF ( NTAPE ) 71,80,71
 71 CALL DPMLTX (UTRSV,NC,VECTOR,NC,US,N,N,MODE,MAXR,MAXR,MAXR)
    K = 1
    DO 72 I=1, MODE
    INDEX = 0
    CALL NPNRMX (US(J), US(J), N, H(K), INDEX, MAXR, NC)
    J = J+K4
72 K = K+NC
 80 PRINT 95
                                                                          MTRS0666
                                                                          MTRS0667
    DO 86 I=1, MODE
      LITR=NITER(I)-NITRSP
                                                                          MTRS0668
    IF ( LITR) 81,82,82
                                                                          MTRS0669
                                                                          MTRS0670
 81 LITR=0
                                                                          MTRS0671
    GOTO 85
 82 NITER(T)=NITRSP
                                                                          MTRS0672
```

```
85 GOTO (83,84),NC
                                                                              MTRS0675
                          PRINT 97, ( 1, EIGVAL(I), NITER(I), NAKSR(I))
                                                                              MTRS0676
    GOTO 86
                                                                              MTRS0678
84 L=2+1-1
                                                                              MTRS0679
                          PRINT 96. ( I. EIGVAL(L), EIGVAL(L+1), NITER(I) MTRS0680
   1, NAKSR(1))
                                                                              MTRS0681
86 CONTINUE
                                                                              MTRS0682
    IF ( MODE ) 92,92,88
                                                                              MTRS0683
 88 PRINT 98
                                                                              MTRS0684
    L=MODE+NC
                                                                              MTRS0685
    CALL MPRINT (VECTOR, N. L. MAXR)
                                                                              MTRS0686
    IF ( NTAPE ) 92,92,90
 90 PRINT 99
    PRINT 93, (H(I), I=1, L)
    CALL MPRINT (US, N. L. MAXR)
 92 RETURN
                                                                              MTRS0691
 93 FORMAT (1H ,6E1g.8)
 94 FORMAT (5H MCDE, 114, 40H HAS NOT CONVERGED IN MAXIMUM ITERATIONS//)MTRS0693
 95 FORMAT (1H17X, 6H MODE 15X, 11H EIGENVALUE 26X, 1 10HITERATIONS 11X, 7HAITKENS /)
                                                                              MTRS0694
                                                                              MTRS0695
 96 FORMAT (1H 1111, 2E19.8, 1122, 1119 )
                                                                              MTRS0697
 97 FORMAT (1H 1111, 9X, 1E20.8, 9X, 1122, 1119 )
98 FORMAT (1H0 / 1H0 46X, 14H EIGENVECTORS ///)
                                                                              MTRS0698
                                                                              MTRS0699
 99 FORMAT (1HD / 1HD 36H CHECK EIGENVALUES AND EIGENVECTORS )
131 FORMAT (48H1ERROR IN ITERATION SUBROUTINE.... ( OVERFLOW ))
                                                                              MTRS0701
132 FORMAT (25H CALCULATION TERMINATED., 116, 19H MODES ARE CORRECT.)
                                                                              MTRS0702
                                                                              MTRS0704
    END
    FND
                                                                               MTRS0704
    END
                                                                              MTRS0704
```